Spaces:
Paused
Paused
import gradio as gr | |
import numpy as np | |
from PIL import Image | |
import cv2 | |
from moviepy.editor import VideoFileClip | |
from share_btn import community_icon_html, loading_icon_html, share_js | |
import torch | |
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler | |
from diffusers.utils import export_to_video | |
def convert_mp4_to_frames(video_path, duration=3): | |
# Read the video file | |
video = cv2.VideoCapture(video_path) | |
# Get the frames per second (fps) of the video | |
fps = video.get(cv2.CAP_PROP_FPS) | |
# Calculate the number of frames to extract | |
num_frames = int(fps * duration) | |
frames = [] | |
frame_count = 0 | |
# Iterate through each frame | |
while True: | |
# Read a frame | |
ret, frame = video.read() | |
# If the frame was not successfully read or we have reached the desired duration, break the loop | |
if not ret or frame_count == num_frames: | |
break | |
# Convert BGR to RGB | |
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
# Append the frame to the list of frames | |
frames.append(frame) | |
frame_count += 1 | |
# Release the video object | |
video.release() | |
# Convert the list of frames to a numpy array | |
frames = np.array(frames) | |
return frames | |
def infer(prompt, video_in, denoise_strength): | |
negative_prompt = "text, watermark, copyright, blurry, nsfw" | |
video = convert_mp4_to_frames(video_in, duration=3) | |
video_resized = [Image.fromarray(frame).resize((1024, 576)) for frame in video] | |
pipe_xl = DiffusionPipeline.from_pretrained("cerspense/zeroscope_v2_XL", torch_dtype=torch.float16, revision="refs/pr/17") | |
pipe_xl.vae.enable_slicing() | |
pipe_xl.scheduler = DPMSolverMultistepScheduler.from_config(pipe_xl.scheduler.config) | |
pipe_xl.enable_model_cpu_offload() | |
#pipe_xl.to("cuda") | |
video_frames = pipe_xl(prompt, negative_prompt=negative_prompt, video=video_resized, strength=denoise_strength).frames | |
del pipe_xl | |
torch.cuda.empty_cache() | |
video_path = export_to_video(video_frames, output_video_path="xl_result.mp4") | |
return "xl_result.mp4", gr.Group.update(visible=True) | |
css = """ | |
#col-container {max-width: 510px; margin-left: auto; margin-right: auto;} | |
a {text-decoration-line: underline; font-weight: 600;} | |
.animate-spin { | |
animation: spin 1s linear infinite; | |
} | |
@keyframes spin { | |
from { | |
transform: rotate(0deg); | |
} | |
to { | |
transform: rotate(360deg); | |
} | |
} | |
#share-btn-container { | |
display: flex; | |
padding-left: 0.5rem !important; | |
padding-right: 0.5rem !important; | |
background-color: #000000; | |
justify-content: center; | |
align-items: center; | |
border-radius: 9999px !important; | |
max-width: 13rem; | |
} | |
#share-btn-container:hover { | |
background-color: #060606; | |
} | |
#share-btn { | |
all: initial; | |
color: #ffffff; | |
font-weight: 600; | |
cursor:pointer; | |
font-family: 'IBM Plex Sans', sans-serif; | |
margin-left: 0.5rem !important; | |
padding-top: 0.5rem !important; | |
padding-bottom: 0.5rem !important; | |
right:0; | |
} | |
#share-btn * { | |
all: unset; | |
} | |
#share-btn-container div:nth-child(-n+2){ | |
width: auto !important; | |
min-height: 0px !important; | |
} | |
#share-btn-container .wrap { | |
display: none !important; | |
} | |
#share-btn-container.hidden { | |
display: none!important; | |
} | |
img[src*='#center'] { | |
display: block; | |
margin: auto; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown( | |
""" | |
<h1 style="text-align: center;">Zeroscope XL</h1> | |
<p style="text-align: center;"> | |
This space is specifically designed for upscaling content made from <br /> | |
<a href="https://huggingface.co/spaces/fffiloni/zeroscope">the zeroscope_v2_576w space</a> using vid2vid. <br /> | |
Remember to use the same prompt that was used to generate the original clip.<br /> | |
For demo purpose, video length is limited to 3 seconds. | |
</p> | |
[![Duplicate this Space](https://huggingface.co/datasets/huggingface/badges/raw/main/duplicate-this-space-sm.svg#center)](https://huggingface.co/spaces/fffiloni/zeroscope-XL?duplicate=true) | |
""" | |
) | |
video_in = gr.Video(type="numpy", source="upload") | |
prompt_in = gr.Textbox(label="Prompt", placeholder="This must be the same prompt you used for the original clip :)", elem_id="prompt-in") | |
denoise_strength = gr.Slider(label="Denoise strength", minimum=0.6, maximum=0.9, step=0.01, value=0.66) | |
#inference_steps = gr.Slider(label="Inference Steps", minimum=10, maximum=100, step=1, value=40, interactive=False) | |
submit_btn = gr.Button("Submit") | |
video_result = gr.Video(label="Video Output", elem_id="video-output") | |
with gr.Group(elem_id="share-btn-container", visible=False) as share_group: | |
community_icon = gr.HTML(community_icon_html) | |
loading_icon = gr.HTML(loading_icon_html) | |
share_button = gr.Button("Share to community", elem_id="share-btn") | |
submit_btn.click(fn=infer, | |
inputs=[prompt_in, video_in, denoise_strength], | |
outputs=[video_result, share_group]) | |
share_button.click(None, [], [], _js=share_js) | |
demo.queue(max_size=12).launch() | |