File size: 4,389 Bytes
22342db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

selected_model = 'lookbook' #@param {type:"string"}

# Load model
import torch
import numpy as np
from PIL import Image
from models import get_instrumented_model
from decomposition import get_or_compute
from config import Config

# Speed up computation
torch.autograd.set_grad_enabled(False)
torch.backends.cudnn.benchmark = True

# Specify model to use
config = Config(
  model='StyleGAN2',
  layer='style',
  output_class=selected_model,
  components=20,
  use_w=True,
  batch_size=5_000, # style layer quite small
)

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

inst = get_instrumented_model(config.model, config.output_class,
                              config.layer, device, use_w=config.use_w)

path_to_components = get_or_compute(config, inst)

model = inst.model

comps = np.load(path_to_components)
lst = comps.files
latent_dirs = []
latent_stdevs = []

load_activations = False

for item in lst:
    if load_activations:
      if item == 'act_comp':
        for i in range(comps[item].shape[0]):
          latent_dirs.append(comps[item][i])
      if item == 'act_stdev':
        for i in range(comps[item].shape[0]):
          latent_stdevs.append(comps[item][i])
    else:
      if item == 'lat_comp':
        for i in range(comps[item].shape[0]):
          latent_dirs.append(comps[item][i])
      if item == 'lat_stdev':
        for i in range(comps[item].shape[0]):
          latent_stdevs.append(comps[item][i])

#@title Define functions
def display_sample_pytorch(seed, truncation, directions, distances, scale, start, end, w=None, disp=True, save=None, noise_spec=None):
    # blockPrint()
    model.truncation = truncation
    if w is None:
        w = model.sample_latent(1, seed=seed).detach().cpu().numpy()
        w = [w]*model.get_max_latents() # one per layer
    else:
        w = [np.expand_dims(x, 0) for x in w]

    for l in range(start, end):
      for i in range(len(directions)):
        w[l] = w[l] + directions[i] * distances[i] * scale

    torch.cuda.empty_cache()
    #save image and display
    out = model.sample_np(w)
    final_im = Image.fromarray((out * 255).astype(np.uint8)).resize((500,500),Image.LANCZOS)


    if save is not None:
      if disp == False:
        print(save)
      final_im.save(f'out/{seed}_{save:05}.png')
    if disp:
      display(final_im)

    return final_im
#@title Demo UI
import gradio as gr
import numpy as np

gr.themes.Glass()

def generate_image(seed=0, c0=0, c1=0, c2=0, c3=0, c4=0, c5=0, c6=0):
    seed = int(seed)
    params = {'c0': -c0,
          'c1': c1,
          'c2': c2,
          'c3': c3,
          'c4': c4,
          'c5': c5,
          'c6': c6}

    # Assigns slider to the principal components
    param_indexes = {'c0': 12,
              'c1': 6,
              'c2': 7,
              'c3': 2,
              'c4': 11,
              'c5': 9,
              'c6': 10}

    # Save the values from the sliders
    directions = []
    distances = []
    for k, v in params.items():
        directions.append(latent_dirs[param_indexes[k]])
        distances.append(v)

    # Additional settings for image generation
    start_layer = 0
    end_layer = 14
    truncation = 0.5

    return display_sample_pytorch(seed, truncation, directions, distances, 1, int(start_layer), int(end_layer), disp=False)

# Create a number input for seed
seed = gr.Number(value=6, label="Seed 1")

slider_max_val = 5
slider_min_val = -5
slider_step = 0.1

# Create the sliders input
c0 = gr.Slider(label="Design Pattern", minimum=slider_min_val, maximum=slider_max_val, value=0)
c1 = gr.Slider(label="Traditional", minimum=slider_min_val, maximum=slider_max_val, value=0)
c2 = gr.Slider(label="Darker Tone", minimum=slider_min_val, maximum=slider_max_val, value=0)
c3 = gr.Slider(label="Neck Line", minimum=slider_min_val, maximum=slider_max_val, value=0)
c4 = gr.Slider(label="Graphics", minimum=slider_min_val, maximum=slider_max_val, value=0)
c5 = gr.Slider(label="Darker Tone", minimum=slider_min_val, maximum=slider_max_val, value=0)
c6 = gr.Slider(label="Greenish", minimum=slider_min_val, maximum=slider_max_val, value=0)


inputs = [seed, c0, c1, c2, c3]

# Launch demo
gr.Interface(generate_image, inputs, ["image"], live=True, title="Fashion GAN", description="StyleGan2+SpaceGan to generate parameter controlled images. With ❤ by TCS Rapid Labs").launch(debug=True, share=True)