|
import glob |
|
import json |
|
import os |
|
from typing import List |
|
|
|
from huggingface_hub import HfApi |
|
from tqdm import tqdm |
|
|
|
from src.get_model_info.hardocded_metadata.flags import DO_NOT_SUBMIT_MODELS, FLAGGED_MODELS |
|
from src.get_model_info.hardocded_metadata.types import MODEL_TYPE_METADATA, ModelType, model_type_from_str |
|
from src.get_model_info.utils import AutoEvalColumn, model_hyperlink |
|
|
|
api = HfApi(token=os.environ.get("H4_TOKEN", None)) |
|
|
|
|
|
def get_model_metadata(leaderboard_data: List[dict]): |
|
for model_data in tqdm(leaderboard_data): |
|
request_files = os.path.join( |
|
"eval-queue", |
|
model_data["model_name_for_query"] + "_eval_request_*" + ".json", |
|
) |
|
request_files = glob.glob(request_files) |
|
|
|
|
|
request_file = "" |
|
if len(request_files) == 1: |
|
request_file = request_files[0] |
|
elif len(request_files) > 1: |
|
request_files = sorted(request_files, reverse=True) |
|
for tmp_request_file in request_files: |
|
with open(tmp_request_file, "r") as f: |
|
req_content = json.load(f) |
|
if ( |
|
req_content["status"] == "FINISHED" |
|
and req_content["precision"] == model_data["Precision"].split(".")[-1] |
|
): |
|
request_file = tmp_request_file |
|
|
|
try: |
|
with open(request_file, "r") as f: |
|
request = json.load(f) |
|
model_type = model_type_from_str(request["model_type"]) |
|
model_data[AutoEvalColumn.model_type.name] = model_type.value.name |
|
model_data[AutoEvalColumn.model_type_symbol.name] = model_type.value.symbol |
|
model_data[AutoEvalColumn.license.name] = request["license"] |
|
model_data[AutoEvalColumn.likes.name] = request["likes"] |
|
model_data[AutoEvalColumn.params.name] = request["params"] |
|
except Exception: |
|
if model_data["model_name_for_query"] in MODEL_TYPE_METADATA: |
|
model_data[AutoEvalColumn.model_type.name] = MODEL_TYPE_METADATA[ |
|
model_data["model_name_for_query"] |
|
].value.name |
|
model_data[AutoEvalColumn.model_type_symbol.name] = MODEL_TYPE_METADATA[ |
|
model_data["model_name_for_query"] |
|
].value.symbol |
|
else: |
|
model_data[AutoEvalColumn.model_type.name] = ModelType.Unknown.value.name |
|
model_data[AutoEvalColumn.model_type_symbol.name] = ModelType.Unknown.value.symbol |
|
|
|
|
|
def flag_models(leaderboard_data: List[dict]): |
|
for model_data in leaderboard_data: |
|
if model_data["model_name_for_query"] in FLAGGED_MODELS: |
|
issue_num = FLAGGED_MODELS[model_data["model_name_for_query"]].split("/")[-1] |
|
issue_link = model_hyperlink( |
|
FLAGGED_MODELS[model_data["model_name_for_query"]], |
|
f"See discussion #{issue_num}", |
|
) |
|
model_data[ |
|
AutoEvalColumn.model.name |
|
] = f"{model_data[AutoEvalColumn.model.name]} has been flagged! {issue_link}" |
|
|
|
|
|
def remove_forbidden_models(leaderboard_data: List[dict]): |
|
indices_to_remove = [] |
|
for ix, model in enumerate(leaderboard_data): |
|
if model["model_name_for_query"] in DO_NOT_SUBMIT_MODELS: |
|
indices_to_remove.append(ix) |
|
|
|
for ix in reversed(indices_to_remove): |
|
leaderboard_data.pop(ix) |
|
return leaderboard_data |
|
|
|
|
|
def apply_metadata(leaderboard_data: List[dict]): |
|
leaderboard_data = remove_forbidden_models(leaderboard_data) |
|
get_model_metadata(leaderboard_data) |
|
flag_models(leaderboard_data) |
|
|