Spaces:
Sleeping
Sleeping
from langchain.embeddings.openai import OpenAIEmbeddings | |
from langchain.vectorstores import Chroma | |
from langchain.text_splitter import CharacterTextSplitter | |
from langchain.chains.question_answering import load_qa_chain | |
from langchain.llms import OpenAI | |
import os | |
import streamlit as st | |
with open("guide1.txt") as f: | |
hitchhikersguide = f.read() | |
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0, separator = "\n") | |
texts = text_splitter.split_text(hitchhikersguide) | |
embeddings = OpenAIEmbeddings() | |
docsearch = Chroma.from_texts(texts, embeddings, metadatas=[{"source": str(i)} for i in range(len(texts))]).as_retriever() | |
chain = load_qa_chain(OpenAI(temperature=0), chain_type="stuff") | |
def make_inference(query): | |
docs = docsearch.get_relevant_documents(query) | |
return(chain.run(input_documents=docs, question=query)) | |
if __name__ == "__main__": | |
# Title of the web application | |
st.title('🗣️TalkToMyDoc📄') | |
# Text input widget | |
user_input = st.text_input('Enter a question about Hitchhiker\'s Galaxy Guide book:', '', help='🗣️TalkToMyDoc📄 is a tool that allows you to ask questions about a document. In this case - Hitch Hitchhiker\'s Guide to the Galaxy..') | |
# Displaying output directly below the input field | |
if user_input: | |
st.write('Answer:', make_inference(user_input)) |