Hitchhicker_qna / app.py
fiona's picture
Update app.py
5308ba8
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import Chroma
from langchain.text_splitter import CharacterTextSplitter
from langchain.chains.question_answering import load_qa_chain
from langchain.llms import OpenAI
import os
import streamlit as st
with open("guide1.txt") as f:
hitchhikersguide = f.read()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0, separator = "\n")
texts = text_splitter.split_text(hitchhikersguide)
embeddings = OpenAIEmbeddings()
docsearch = Chroma.from_texts(texts, embeddings, metadatas=[{"source": str(i)} for i in range(len(texts))]).as_retriever()
chain = load_qa_chain(OpenAI(temperature=0), chain_type="stuff")
def make_inference(query):
docs = docsearch.get_relevant_documents(query)
return(chain.run(input_documents=docs, question=query))
if __name__ == "__main__":
# Title of the web application
st.title('🗣️TalkToMyDoc📄')
# Text input widget
user_input = st.text_input('Enter a question about Hitchhiker\'s Galaxy Guide book:', '', help='🗣️TalkToMyDoc📄 is a tool that allows you to ask questions about a document. In this case - Hitch Hitchhiker\'s Guide to the Galaxy..')
# Displaying output directly below the input field
if user_input:
st.write('Answer:', make_inference(user_input))