File size: 5,648 Bytes
cd57df6
 
 
 
 
e7406ba
 
 
 
 
789886f
e7406ba
cd57df6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbadc82
e7406ba
 
cd57df6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa1e3ae
cd57df6
 
 
 
 
 
 
 
 
e7406ba
cd57df6
 
 
 
 
 
 
 
e7406ba
 
 
 
 
bbadc82
e7406ba
 
 
 
 
 
cd57df6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import gradio as gr
from PIL import Image
from io import BytesIO
import requests
import time
from openai import OpenAI, AzureOpenAI

engine = "gpt-4o"
api_key = "9e95c7efd64648bd86cd2fcfbe17905b"
api_base = "https://chatpartner-miniprogram.openai.azure.com/"
api_version = "2024-02-15-preview"
client = AzureOpenAI(api_key=api_key, azure_endpoint=api_base, api_version=api_version)

class ImageProcessor:
    def __init__(self, api_key):
        self.api_key = api_key
        self.submit_url = 'https://test.aitanzou.com/web/api/task/submit'
        self.result_url = 'https://test.aitanzou.com/web/api/getResult'
        self.headers = {
            'API-Key': self.api_key
        }

    def submit_images(self, image_bytes_list):
        files = [('images', ('image.png', image_bytes, 'image/png')) for image_bytes in image_bytes_list]
        response = requests.post(self.submit_url, headers=self.headers, files=files)
        
        if response.status_code == 200:
            data = response.json()
            if 'data' in data and 'taskId' in data['data']:
                task_id = data['data']['taskId']
                return task_id
            else:
                raise Exception(f'Unexpected response format: {data}')
        else:
            raise Exception(f'Error: {response.status_code}, {response.text}')

    def get_result(self, task_id):
        params = {'taskId': task_id}
        while True:
            result_response = requests.get(self.result_url, params=params)
            if result_response.status_code == 200:
                result_data = result_response.json()
                if 'data' in result_data and 'abcPath' in result_data['data']:
                    if result_data['data']['abcPath'] is None:
                        print('Task is still pending...')
                        time.sleep(10)
                    else:
                        url = result_data['data']['abcPath']
                        response = requests.get(url)
                        if response.status_code == 200:
                            return response.text
                        else:
                            raise Exception(f'Error retrieving file content: {response.status_code}, {response.text}')
                else:
                    raise Exception(f'Unexpected result format: {result_data}')
            else:
                raise Exception(f'Error: {result_response.status_code}, {result_response.text}')
    
    def process_images(self, image_bytes_list):
        task_id = self.submit_images(image_bytes_list)
        return self.get_result(task_id)

# 设置API密钥
api_key = 'ddc85b14-bd83-4757-9bc4-8a11194da536'
image_processor = ImageProcessor(api_key)

# 定义处理函数
def process_input(text=None, images=None, audio=None):
    # 创建GPT请求的描述
    
    system = "1.你是一个专业的钢琴音乐教师,只能回答音乐知识,回复的内容为普通文本格式。如果提供的乐谱是abc记谱法,则回复时不要用abc记谱法,需要转换为传统的普通记谱法使用专业词汇进行回答问题2.你将根据下面指令回答问题,但是不能违反第一条指令,也不能在回复中提及。"
    messages = [{"role": "system", "content": system}]
    prompt = ""
    if text:
        prompt += f"\nText input: {text}"
    
    if images:
        # 使用ImageProcessor处理图像
        image_bytes_list = []
        for image in images:
            img = Image.open(image)
            image_bytes = BytesIO()
            img.save(image_bytes, format="PNG")
            image_bytes.seek(0)
            image_bytes_list.append(image_bytes.getvalue())
        
        try:
            processed_image_result = image_processor.process_images(image_bytes_list)
            prompt += f"\n乐谱的内容如下,这是一首杜维诺伊的曲子,请你根据他的曲风回答问题: {processed_image_result}"
        except Exception as e:
            return f"Error processing image: {e}", None
    
    if audio:
        # 将音频转换为描述(这里简单地用占位符)
        prompt += "\nAudio input: A description of the audio has been generated."
    
    # 使用GPT API进行处理
    try:
        '''
        from zhipuai import ZhipuAI
        client = ZhipuAI(api_key="7cfa094b2c6867229659831340af9f2c.BIl47duC5fufSY8V") # 填写您自己的APIKey
        response = client.chat.completions.create(
            model="glm-4",  # 填写需要调用的模型名称
            messages=[
            {"role": "user", "content": prompt},        
            ],
        )
        '''
        messages.append({"role": "user", "content": prompt})
        response = client.chat.completions.create(
            model=engine,
            messages=messages,
            temperature=0.1,
            max_tokens=4096,
            top_p=0.95,
            frequency_penalty=0,
            presence_penalty=0,
            stop=None
        )
        print(response.choices[0].message.content)
        return response.choices[0].message.content.strip()
    except Exception as e:
        return f"Error: {e}", None

# 创建Gradio接口
iface = gr.Interface(
    fn=process_input,
    inputs=[
        gr.Textbox(label="Input Text", placeholder="Enter text here"),
        gr.File(label="Input Images", file_count="multiple", type="filepath"),  # 支持多文件上传
        # gr.Audio(label="Input Audio", type="filepath"),
    ],
    outputs=[
        gr.Textbox(label="Output Text"),
        # gr.Audio(label="Output Audio")  # 目前示例中未处理音频输出
    ],
    live=True
)

# 启动Gradio应用
iface.launch()