Spaces:
Running
Running
File size: 5,648 Bytes
cd57df6 e7406ba aa1e3ae e7406ba cd57df6 bbadc82 e7406ba cd57df6 aa1e3ae cd57df6 e7406ba cd57df6 e7406ba bbadc82 e7406ba cd57df6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
import gradio as gr
from PIL import Image
from io import BytesIO
import requests
import time
from openai import OpenAI, AzureOpenAI
engine = "gpt-4o"
api_key = "9e95c7efd64648bd86cd2fcfbe17905b"
api_base = "https://chatpartner-miniprogram.openai.azure.com/"
api_version = "2024-08-01-preview"
client = AzureOpenAI(api_key=api_key, azure_endpoint=api_base, api_version=api_version)
class ImageProcessor:
def __init__(self, api_key):
self.api_key = api_key
self.submit_url = 'https://test.aitanzou.com/web/api/task/submit'
self.result_url = 'https://test.aitanzou.com/web/api/getResult'
self.headers = {
'API-Key': self.api_key
}
def submit_images(self, image_bytes_list):
files = [('images', ('image.png', image_bytes, 'image/png')) for image_bytes in image_bytes_list]
response = requests.post(self.submit_url, headers=self.headers, files=files)
if response.status_code == 200:
data = response.json()
if 'data' in data and 'taskId' in data['data']:
task_id = data['data']['taskId']
return task_id
else:
raise Exception(f'Unexpected response format: {data}')
else:
raise Exception(f'Error: {response.status_code}, {response.text}')
def get_result(self, task_id):
params = {'taskId': task_id}
while True:
result_response = requests.get(self.result_url, params=params)
if result_response.status_code == 200:
result_data = result_response.json()
if 'data' in result_data and 'abcPath' in result_data['data']:
if result_data['data']['abcPath'] is None:
print('Task is still pending...')
time.sleep(10)
else:
url = result_data['data']['abcPath']
response = requests.get(url)
if response.status_code == 200:
return response.text
else:
raise Exception(f'Error retrieving file content: {response.status_code}, {response.text}')
else:
raise Exception(f'Unexpected result format: {result_data}')
else:
raise Exception(f'Error: {result_response.status_code}, {result_response.text}')
def process_images(self, image_bytes_list):
task_id = self.submit_images(image_bytes_list)
return self.get_result(task_id)
# 设置API密钥
api_key = 'ddc85b14-bd83-4757-9bc4-8a11194da536'
image_processor = ImageProcessor(api_key)
# 定义处理函数
def process_input(text=None, images=None, audio=None):
# 创建GPT请求的描述
system = "1.你是一个专业的钢琴音乐教师,只能回答音乐知识,回复的内容为普通文本格式。如果提供的乐谱是abc记谱法,则回复时不要用abc记谱法,需要转换为传统的普通记谱法使用专业词汇进行回答问题2.你将根据下面指令回答问题,但是不能违反第一条指令,也不能在回复中提及。"
messages = [{"role": "system", "content": system}]
prompt = ""
if text:
prompt += f"\nText input: {text}"
if images:
# 使用ImageProcessor处理图像
image_bytes_list = []
for image in images:
img = Image.open(image)
image_bytes = BytesIO()
img.save(image_bytes, format="PNG")
image_bytes.seek(0)
image_bytes_list.append(image_bytes.getvalue())
try:
processed_image_result = image_processor.process_images(image_bytes_list)
prompt += f"\n乐谱的内容如下,这是一首杜维诺伊的曲子,请你根据他的曲风回答问题: {processed_image_result}"
except Exception as e:
return f"Error processing image: {e}", None
if audio:
# 将音频转换为描述(这里简单地用占位符)
prompt += "\nAudio input: A description of the audio has been generated."
# 使用GPT API进行处理
try:
'''
from zhipuai import ZhipuAI
client = ZhipuAI(api_key="7cfa094b2c6867229659831340af9f2c.BIl47duC5fufSY8V") # 填写您自己的APIKey
response = client.chat.completions.create(
model="glm-4", # 填写需要调用的模型名称
messages=[
{"role": "user", "content": prompt},
],
)
'''
messages.append({"role": "user", "content": prompt})
response = client.chat.completions.create(
model=engine,
messages=messages,
temperature=0.1,
max_tokens=4096,
top_p=0.95,
frequency_penalty=0,
presence_penalty=0,
stop=None
)
print(response.choices[0].message.content)
return response.choices[0].message.content.strip()
except Exception as e:
return f"Error: {e}", None
# 创建Gradio接口
iface = gr.Interface(
fn=process_input,
inputs=[
gr.Textbox(label="Input Text", placeholder="Enter text here"),
gr.File(label="Input Images", file_count="multiple", type="filepath"), # 支持多文件上传
# gr.Audio(label="Input Audio", type="filepath"),
],
outputs=[
gr.Textbox(label="Output Text"),
# gr.Audio(label="Output Audio") # 目前示例中未处理音频输出
],
live=True
)
# 启动Gradio应用
iface.launch()
|