Spaces:
Running
Running
File size: 9,123 Bytes
d0c2b7c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
import gradio as gr
from PIL import Image
from io import BytesIO
import openai
import os
from dotenv import load_dotenv
from image_processor import ImageProcessor
from evaluation_processor import EvaluationProcessor
from zhipuai import ZhipuAI
from collections import deque
# Load environment variables
load_dotenv()
# Initialize OpenAI client
openai.api_key = os.getenv("OPENAI_API_KEY")
engine = "gpt-4o-mini"
# Initialize image and evaluation processors
api_key = 'ddc85b14-bd83-4757-9bc4-8a11194da536'
image_processor = ImageProcessor(api_key)
evaluation_processor = EvaluationProcessor(api_key)
# Initialize memory with a deque (double-ended queue) to store up to 5 rounds
memory = deque(maxlen=5)
prev_image_result = None
prev_audio_result = None
prev_video_result = None
prev_image_files = None
prev_audio_file = None
prev_video_file = None
def process_input(text=None, images=None, audio=None, video=None):
global prev_image_result, prev_audio_result, prev_video_result
global prev_image_files, prev_audio_file, prev_video_file
print("Starting process_input")
system_prompt = (
"1.你是一个音乐专家,只能回答音乐知识..."
)
# 包含历史对话在内的 messages
messages = [{"role": "system", "content": system_prompt}]
# 将历史对话从 memory 加入到 messages 中
for past in memory:
messages.append({"role": "user", "content": past["prompt"]})
messages.append({"role": "assistant", "content": past["response"]})
prompt = ""
# 处理文本输入
if text:
print("Processing text input")
prompt += f"\nText input: {text}"
result_path = None
# 处理图片输入
if images:
if prev_image_files and set(images) == set(prev_image_files):
print("Using previous image result")
prompt += prev_image_result
else:
print("Processing images")
prompt += process_images(images)
prev_image_result = prompt # 更新图片处理结果
prev_image_files = images # 更新图片文件
elif prev_image_result:
print("Using previous image result")
prompt += prev_image_result
# 处理音频输入
if audio:
if prev_audio_file and audio.name == prev_audio_file.name:
print("Using previous audio result")
prompt += prev_audio_result
else:
print("Processing audio")
result, title = process_audio(audio)
prompt += result
result_path = title.get('result_path', '')
prev_audio_result = result # 更新音频处理结果
prev_audio_file = audio # 更新音频文件
elif prev_audio_result:
print("Using previous audio result")
prompt += prev_audio_result
# 处理视频输入
if video:
if prev_video_file and video.name == prev_video_file.name:
print("Using previous video result")
prompt += prev_video_result
else:
print("Processing video")
result, title = process_video(video)
prompt += result
result_path = title.get('result_path', '')
prev_video_result = result # 更新视频处理结果
prev_video_file = video # 更新视频文件
elif prev_video_result:
print("Using previous video result")
prompt += prev_video_result
# 将当前对话存储到 memory(包括问题和模型的回答)
current_conversation = {"prompt": prompt, "response": ""}
response, result_path = get_zhipuai_response(messages, prompt)
current_conversation["response"] = response # 更新当前对话的回复
memory.append(current_conversation) # 保存当前对话到历史中
return response, result_path
def process_images(images):
image_bytes_list = []
for image in images:
img = Image.open(image.name)
image_bytes = BytesIO()
img.save(image_bytes, format="PNG")
image_bytes.seek(0)
image_bytes_list.append(image_bytes.getvalue())
try:
processed_image_result = image_processor.process_images(image_bytes_list)
return f"\n乐谱的内容如下,请你根据曲子的曲风回答问题: {processed_image_result}"
except Exception as e:
return f"Error processing image: {e}"
def process_audio(audio):
audio_path = audio.name
try:
result, title = evaluation_processor.process_evaluation(audio_path, is_video=False)
prompt = (
f'''如果有曲名{title},请你根据这首歌的名字作者,并且'''
f'''1. 请你从
"eva_all":综合得分
"eva_completion":完整性
"eva_note":按键
"eva_stability":稳定性
"eva_tempo_sync":节奏
几个方面评价一下下面这首曲子演奏的结果, 不用提及键的英文,只使用中文,曲子为 {result}'''
)
return prompt, title
except Exception as e:
return f"Error processing audio: {e}", None
def process_video(video):
video_path = video.name
try:
result, title = evaluation_processor.process_evaluation(video_path, is_video=True)
prompt = (
f'''如果有曲名{title},请你根据这首歌的名字作者,并且'''
f'''1.请你从
"eva_all":综合得分
"eva_completion":完整性
"eva_note":按键
"eva_stability":稳定性
"eva_tempo_sync":节奏
几个方面评价一下下面这首曲子演奏的结果, 不用提及键的英文,只使用中文,曲子为 {result}'''
)
return prompt, title
except Exception as e:
return f"Error processing video: {e}", None
def get_gpt_response(messages, prompt):
messages.append({"role": "user", "content": prompt})
response_text = ""
# Use OpenAI API for streaming response
try:
for chunk in openai.ChatCompletion.create(
model=engine,
messages=messages,
temperature=0.2,
max_tokens=4096,
top_p=0.95,
frequency_penalty=0,
presence_penalty=0,
stream=True # Enable streaming
):
if 'content' in chunk['choices'][0]['delta']:
response_text += chunk['choices'][0]['delta']['content']
yield response_text # Yield response incrementally
except Exception as e:
yield f"Error: {e}"
def get_zhipuai_response_stream(messages, prompt):
print("Inside get_zhipuai_response")
client = ZhipuAI(api_key="423ca4c1f712621a4a1740bb6008673b.81aM7DNo2Ssn8FPA")
messages.append({"role": "user", "content": prompt})
response_text = ""
# Use ZhipuAI API for streaming response
try:
response = client.chat.completions.create(
model="glm-4-flash",
messages=messages,
stream=True # Enable streaming
)
print("Response received from ZhipuAI")
print(response)
for chunk in response:
print(f"Chunk received: {chunk}") # Log each chunk
response_text = chunk.choices[0].delta.content
print(response_text)
yield response_text # Yield response incrementally
except Exception as e:
print(f"Error in get_zhipuai_response_stream: {e}")
yield f"Error: {e}"
def get_zhipuai_response(messages, prompt):
print("Inside get_zhipuai_response") # Confirming entry into the function
client = ZhipuAI(api_key="423ca4c1f712621a4a1740bb6008673b.81aM7DNo2Ssn8FPA")
messages.append({"role": "user", "content": prompt})
print("Messages prepared:", messages) # Log messages
response_text = ""
# Non-streaming test
try:
print("Calling ZhipuAI API...") # Log before API call
response = client.chat.completions.create(
model="glm-4-flash",
messages=messages,
stream=False # Disable streaming for this test
)
print("Response received from ZhipuAI") # Log response retrieval
response_text = response.choices[0].message.content
return response_text # Return the entire response
except Exception as e:
print(f"Error in get_zhipuai_response: {e}") # More informative error message
return f"Error: {e}"
# Create Gradio interface
iface = gr.Interface(
fn=process_input,
inputs=[
gr.Textbox(label="Input Text", placeholder="我是音乐多模态大模型,您可以上传需要分析的曲谱,音频和视频", lines=2),
gr.File(label="Input Images", file_count="multiple", type="filepath"),
gr.File(label="Input Audio, mp3", type="filepath"),
gr.File(label="Input Video, mp4", type="filepath")
],
outputs=[
gr.Textbox(label="Output Text", interactive=True), # Enable streaming in the output
gr.HTML(label="Webpage")
],
live=False,
)
# Launch Gradio application
iface.launch()
|