Spaces:
Running
Running
feat: use model definition
Browse files- dalle_mini/model.py +23 -22
- dev/seq2seq/run_seq2seq_flax.py +56 -132
dalle_mini/model.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
|
2 |
import jax
|
3 |
import flax.linen as nn
|
4 |
|
@@ -7,25 +6,14 @@ from transformers.models.bart.modeling_flax_bart import (
|
|
7 |
FlaxBartForConditionalGenerationModule,
|
8 |
FlaxBartForConditionalGeneration,
|
9 |
FlaxBartEncoder,
|
10 |
-
FlaxBartDecoder
|
11 |
)
|
12 |
|
13 |
from transformers import BartConfig
|
14 |
|
15 |
|
16 |
-
# Model hyperparameters, for convenience
|
17 |
-
OUTPUT_VOCAB_SIZE = 16384 + 1 # encoded image token space + 1 for bos
|
18 |
-
OUTPUT_LENGTH = 256 + 1 # number of encoded tokens + 1 for bos
|
19 |
-
BOS_TOKEN_ID = 16384
|
20 |
-
BASE_MODEL = 'facebook/bart-large-cnn' # we currently have issues with bart-large
|
21 |
-
|
22 |
-
|
23 |
class CustomFlaxBartModule(FlaxBartModule):
|
24 |
def setup(self):
|
25 |
-
# check config is valid, otherwise set default values
|
26 |
-
self.config.vocab_size_output = getattr(self.config, 'vocab_size_output', OUTPUT_VOCAB_SIZE)
|
27 |
-
self.config.max_position_embeddings_decoder = getattr(self.config, 'max_position_embeddings_decoder', OUTPUT_LENGTH)
|
28 |
-
|
29 |
# we keep shared to easily load pre-trained weights
|
30 |
self.shared = nn.Embed(
|
31 |
self.config.vocab_size,
|
@@ -35,32 +23,45 @@ class CustomFlaxBartModule(FlaxBartModule):
|
|
35 |
)
|
36 |
# a separate embedding is used for the decoder
|
37 |
self.decoder_embed = nn.Embed(
|
38 |
-
self.config.
|
39 |
self.config.d_model,
|
40 |
embedding_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),
|
41 |
dtype=self.dtype,
|
42 |
)
|
43 |
-
self.encoder = FlaxBartEncoder(
|
|
|
|
|
44 |
|
45 |
# the decoder has a different config
|
46 |
decoder_config = BartConfig(self.config.to_dict())
|
47 |
-
decoder_config.max_position_embeddings =
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
-
class CustomFlaxBartForConditionalGenerationModule(
|
|
|
|
|
52 |
def setup(self):
|
53 |
# check config is valid, otherwise set default values
|
54 |
-
|
|
|
55 |
|
56 |
self.model = CustomFlaxBartModule(config=self.config, dtype=self.dtype)
|
57 |
self.lm_head = nn.Dense(
|
58 |
-
self.config.
|
59 |
use_bias=False,
|
60 |
dtype=self.dtype,
|
61 |
kernel_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),
|
62 |
)
|
63 |
-
self.final_logits_bias = self.param(
|
|
|
|
|
|
|
64 |
|
65 |
class CustomFlaxBartForConditionalGeneration(FlaxBartForConditionalGeneration):
|
66 |
module_class = CustomFlaxBartForConditionalGenerationModule
|
|
|
|
|
1 |
import jax
|
2 |
import flax.linen as nn
|
3 |
|
|
|
6 |
FlaxBartForConditionalGenerationModule,
|
7 |
FlaxBartForConditionalGeneration,
|
8 |
FlaxBartEncoder,
|
9 |
+
FlaxBartDecoder,
|
10 |
)
|
11 |
|
12 |
from transformers import BartConfig
|
13 |
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
class CustomFlaxBartModule(FlaxBartModule):
|
16 |
def setup(self):
|
|
|
|
|
|
|
|
|
17 |
# we keep shared to easily load pre-trained weights
|
18 |
self.shared = nn.Embed(
|
19 |
self.config.vocab_size,
|
|
|
23 |
)
|
24 |
# a separate embedding is used for the decoder
|
25 |
self.decoder_embed = nn.Embed(
|
26 |
+
self.config.image_vocab_size + 1,
|
27 |
self.config.d_model,
|
28 |
embedding_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),
|
29 |
dtype=self.dtype,
|
30 |
)
|
31 |
+
self.encoder = FlaxBartEncoder(
|
32 |
+
self.config, dtype=self.dtype, embed_tokens=self.shared
|
33 |
+
)
|
34 |
|
35 |
# the decoder has a different config
|
36 |
decoder_config = BartConfig(self.config.to_dict())
|
37 |
+
decoder_config.max_position_embeddings = (
|
38 |
+
self.config.image_length + 1 # image tokens + BOS
|
39 |
+
)
|
40 |
+
decoder_config.vocab_size = self.config.image_vocab_size + 1
|
41 |
+
self.decoder = FlaxBartDecoder(
|
42 |
+
decoder_config, dtype=self.dtype, embed_tokens=self.decoder_embed
|
43 |
+
)
|
44 |
+
|
45 |
|
46 |
+
class CustomFlaxBartForConditionalGenerationModule(
|
47 |
+
FlaxBartForConditionalGenerationModule
|
48 |
+
):
|
49 |
def setup(self):
|
50 |
# check config is valid, otherwise set default values
|
51 |
+
# TODO: simplify with custom config class
|
52 |
+
self.config.text_normalized = True / False
|
53 |
|
54 |
self.model = CustomFlaxBartModule(config=self.config, dtype=self.dtype)
|
55 |
self.lm_head = nn.Dense(
|
56 |
+
self.config.image_vocab_size + 1, # encoded image token space + 1 for bos
|
57 |
use_bias=False,
|
58 |
dtype=self.dtype,
|
59 |
kernel_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),
|
60 |
)
|
61 |
+
self.final_logits_bias = self.param(
|
62 |
+
"final_logits_bias", self.bias_init, (1, self.config.image_vocab_size + 1)
|
63 |
+
)
|
64 |
+
|
65 |
|
66 |
class CustomFlaxBartForConditionalGeneration(FlaxBartForConditionalGeneration):
|
67 |
module_class = CustomFlaxBartForConditionalGenerationModule
|
dev/seq2seq/run_seq2seq_flax.py
CHANGED
@@ -17,10 +17,9 @@
|
|
17 |
Fine-tuning the library models for seq2seq, text to image.
|
18 |
Script adapted from run_summarization_flax.py
|
19 |
"""
|
20 |
-
# You can also adapt this script on your own sequence to sequence task. Pointers for this are left as comments.
|
21 |
|
22 |
import os
|
23 |
-
import logging
|
24 |
import sys
|
25 |
from dataclasses import dataclass, field
|
26 |
from pathlib import Path
|
@@ -44,7 +43,6 @@ from flax.training import train_state
|
|
44 |
from flax.training.common_utils import get_metrics, onehot, shard, shard_prng_key
|
45 |
from transformers import (
|
46 |
AutoTokenizer,
|
47 |
-
FlaxBartForConditionalGeneration,
|
48 |
HfArgumentParser,
|
49 |
TrainingArguments,
|
50 |
)
|
@@ -53,16 +51,9 @@ from transformers.models.bart.modeling_flax_bart import *
|
|
53 |
import wandb
|
54 |
|
55 |
from dalle_mini.text import TextNormalizer
|
|
|
56 |
|
57 |
-
logger =
|
58 |
-
|
59 |
-
|
60 |
-
# Model hyperparameters, for convenience
|
61 |
-
# TODO: the model has now it's own definition file and should be imported
|
62 |
-
OUTPUT_VOCAB_SIZE = 16384 + 1 # encoded image token space + 1 for bos
|
63 |
-
OUTPUT_LENGTH = 256 + 1 # number of encoded tokens + 1 for bos
|
64 |
-
BOS_TOKEN_ID = 16384
|
65 |
-
BASE_MODEL = "facebook/bart-large-cnn" # we currently have issues with bart-large
|
66 |
|
67 |
|
68 |
@dataclass
|
@@ -72,24 +63,30 @@ class ModelArguments:
|
|
72 |
"""
|
73 |
|
74 |
model_name_or_path: Optional[str] = field(
|
75 |
-
default=
|
76 |
metadata={
|
77 |
"help": "The model checkpoint for weights initialization."
|
78 |
"Don't set if you want to train a model from scratch."
|
79 |
},
|
80 |
)
|
81 |
-
|
82 |
default=None,
|
83 |
-
metadata={
|
84 |
-
|
85 |
-
|
|
|
|
|
86 |
)
|
87 |
-
|
88 |
-
default=
|
89 |
metadata={
|
90 |
-
"help": "
|
91 |
},
|
92 |
)
|
|
|
|
|
|
|
|
|
93 |
dtype: Optional[str] = field(
|
94 |
default="float32",
|
95 |
metadata={
|
@@ -158,22 +155,6 @@ class DataTrainingArguments:
|
|
158 |
default=False,
|
159 |
metadata={"help": "Whether to use decay in the learning rate scheduler."},
|
160 |
)
|
161 |
-
max_target_length: Optional[int] = field(
|
162 |
-
default=OUTPUT_LENGTH,
|
163 |
-
metadata={
|
164 |
-
"help": "The maximum total sequence length for target text after tokenization. Sequences longer "
|
165 |
-
"than this will be truncated, sequences shorter will be padded."
|
166 |
-
},
|
167 |
-
)
|
168 |
-
val_max_target_length: Optional[int] = field(
|
169 |
-
default=OUTPUT_LENGTH,
|
170 |
-
metadata={
|
171 |
-
"help": "The maximum total sequence length for validation target text after tokenization. Sequences longer "
|
172 |
-
"than this will be truncated, sequences shorter will be padded. Will default to `max_target_length`."
|
173 |
-
"This argument is also used to override the `max_length` param of `model.generate`, which is used "
|
174 |
-
"during evaluation."
|
175 |
-
},
|
176 |
-
)
|
177 |
max_train_samples: Optional[int] = field(
|
178 |
default=None,
|
179 |
metadata={
|
@@ -188,10 +169,6 @@ class DataTrainingArguments:
|
|
188 |
"value if set."
|
189 |
},
|
190 |
)
|
191 |
-
normalize_text: bool = field(
|
192 |
-
default=False,
|
193 |
-
metadata={"help": "Normalize/Simplify text"},
|
194 |
-
)
|
195 |
preprocessing_num_workers: Optional[int] = field(
|
196 |
default=80, # ensure we have the same datasets cached data and avoid using too much space
|
197 |
metadata={"help": "The number of processes to use for the preprocessing."},
|
@@ -243,8 +220,6 @@ class DataTrainingArguments:
|
|
243 |
"json",
|
244 |
"jsonl",
|
245 |
], "`validation_file` should be a tsv, csv or json file."
|
246 |
-
if self.val_max_target_length is None:
|
247 |
-
self.val_max_target_length = self.max_target_length
|
248 |
if self.streaming and (self.len_train is None or self.len_eval is None):
|
249 |
raise ValueError(
|
250 |
"Streaming requires providing length of training and validation datasets"
|
@@ -273,70 +248,6 @@ class TrainState(train_state.TrainState):
|
|
273 |
return self.replace(step=new_step, opt_state=new_opt_state)
|
274 |
|
275 |
|
276 |
-
class CustomFlaxBartModule(FlaxBartModule):
|
277 |
-
def setup(self):
|
278 |
-
# check config is valid, otherwise set default values
|
279 |
-
self.config.vocab_size_output = getattr(
|
280 |
-
self.config, "vocab_size_output", OUTPUT_VOCAB_SIZE
|
281 |
-
)
|
282 |
-
self.config.max_position_embeddings_decoder = getattr(
|
283 |
-
self.config, "max_position_embeddings_decoder", OUTPUT_LENGTH
|
284 |
-
)
|
285 |
-
|
286 |
-
# we keep shared to easily load pre-trained weights
|
287 |
-
self.shared = nn.Embed(
|
288 |
-
self.config.vocab_size,
|
289 |
-
self.config.d_model,
|
290 |
-
embedding_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),
|
291 |
-
dtype=self.dtype,
|
292 |
-
)
|
293 |
-
# a separate embedding is used for the decoder
|
294 |
-
self.decoder_embed = nn.Embed(
|
295 |
-
self.config.vocab_size_output,
|
296 |
-
self.config.d_model,
|
297 |
-
embedding_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),
|
298 |
-
dtype=self.dtype,
|
299 |
-
)
|
300 |
-
self.encoder = FlaxBartEncoder(
|
301 |
-
self.config, dtype=self.dtype, embed_tokens=self.shared
|
302 |
-
)
|
303 |
-
|
304 |
-
# the decoder has a different config
|
305 |
-
decoder_config = BartConfig(self.config.to_dict())
|
306 |
-
decoder_config.max_position_embeddings = (
|
307 |
-
self.config.max_position_embeddings_decoder
|
308 |
-
)
|
309 |
-
decoder_config.vocab_size = self.config.vocab_size_output
|
310 |
-
self.decoder = FlaxBartDecoder(
|
311 |
-
decoder_config, dtype=self.dtype, embed_tokens=self.decoder_embed
|
312 |
-
)
|
313 |
-
|
314 |
-
|
315 |
-
class CustomFlaxBartForConditionalGenerationModule(
|
316 |
-
FlaxBartForConditionalGenerationModule
|
317 |
-
):
|
318 |
-
def setup(self):
|
319 |
-
# check config is valid, otherwise set default values
|
320 |
-
self.config.vocab_size_output = getattr(
|
321 |
-
self.config, "vocab_size_output", OUTPUT_VOCAB_SIZE
|
322 |
-
)
|
323 |
-
|
324 |
-
self.model = CustomFlaxBartModule(config=self.config, dtype=self.dtype)
|
325 |
-
self.lm_head = nn.Dense(
|
326 |
-
self.config.vocab_size_output,
|
327 |
-
use_bias=False,
|
328 |
-
dtype=self.dtype,
|
329 |
-
kernel_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),
|
330 |
-
)
|
331 |
-
self.final_logits_bias = self.param(
|
332 |
-
"final_logits_bias", self.bias_init, (1, self.config.vocab_size_output)
|
333 |
-
)
|
334 |
-
|
335 |
-
|
336 |
-
class CustomFlaxBartForConditionalGeneration(FlaxBartForConditionalGeneration):
|
337 |
-
module_class = CustomFlaxBartForConditionalGenerationModule
|
338 |
-
|
339 |
-
|
340 |
def data_loader(
|
341 |
rng: jax.random.PRNGKey, dataset: Dataset, batch_size: int, shuffle: bool = False
|
342 |
):
|
@@ -440,13 +351,13 @@ def main():
|
|
440 |
)
|
441 |
|
442 |
# Make one log on every process with the configuration for debugging.
|
443 |
-
|
444 |
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
445 |
datefmt="%m/%d/%Y %H:%M:%S",
|
446 |
-
level=
|
447 |
)
|
448 |
# Setup logging, we only want one process per machine to log things on the screen.
|
449 |
-
logger.setLevel(
|
450 |
if jax.process_index() == 0:
|
451 |
datasets.utils.logging.set_verbosity_warning()
|
452 |
transformers.utils.logging.set_verbosity_info()
|
@@ -483,44 +394,57 @@ def main():
|
|
483 |
if model_args.from_checkpoint is not None:
|
484 |
artifact = wandb.run.use_artifact(model_args.from_checkpoint)
|
485 |
artifact_dir = artifact.download()
|
|
|
|
|
486 |
model = CustomFlaxBartForConditionalGeneration.from_pretrained(artifact_dir)
|
487 |
|
488 |
# load tokenizer
|
489 |
tokenizer = AutoTokenizer.from_pretrained(
|
490 |
artifact_dir,
|
491 |
-
use_fast=
|
492 |
)
|
493 |
|
494 |
else:
|
495 |
# Set up our new model config
|
|
|
496 |
config = BartConfig.from_pretrained(model_args.model_name_or_path)
|
497 |
-
config.
|
498 |
-
config.
|
499 |
-
|
500 |
-
|
501 |
-
)
|
502 |
-
config.
|
503 |
-
BOS_TOKEN_ID # should not be needed (as we generate until max_length)
|
504 |
-
)
|
505 |
-
config.eos_token_id = BOS_TOKEN_ID + 1 # unreachable
|
506 |
config.forced_bos_token_id = None # we don't need this token
|
507 |
config.forced_eos_token_id = None # we don't need this token
|
508 |
-
|
509 |
-
|
510 |
-
|
511 |
-
config.
|
512 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
513 |
|
514 |
# Create a custom model and initialize it randomly
|
515 |
-
model = CustomFlaxBartForConditionalGeneration(
|
516 |
config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype)
|
517 |
)
|
518 |
|
519 |
# Load tokenizer
|
520 |
-
|
521 |
-
|
522 |
-
|
523 |
-
|
|
|
|
|
|
|
|
|
|
|
524 |
|
525 |
print(f"TPUs: {jax.device_count()}")
|
526 |
assert jax.device_count() == 8, "TPUs in use, please check running processes"
|
@@ -543,7 +467,7 @@ def main():
|
|
543 |
shifted_input_ids[:, 0] = decoder_start_token_id
|
544 |
return shifted_input_ids
|
545 |
|
546 |
-
text_normalizer = TextNormalizer() if
|
547 |
|
548 |
def normalize_text(example):
|
549 |
example[text_column] = text_normalizer(example[text_column])
|
@@ -590,7 +514,7 @@ def main():
|
|
590 |
)
|
591 |
if data_args.streaming:
|
592 |
train_dataset = train_dataset.shuffle(1000, training_args.seed)
|
593 |
-
if
|
594 |
train_dataset = (
|
595 |
train_dataset.map(normalize_text)
|
596 |
if data_args.streaming
|
@@ -627,7 +551,7 @@ def main():
|
|
627 |
if data_args.streaming
|
628 |
else eval_dataset.select(range(data_args.max_train_samples))
|
629 |
)
|
630 |
-
if
|
631 |
eval_dataset = (
|
632 |
eval_dataset.map(normalize_text)
|
633 |
if data_args.streaming
|
|
|
17 |
Fine-tuning the library models for seq2seq, text to image.
|
18 |
Script adapted from run_summarization_flax.py
|
19 |
"""
|
|
|
20 |
|
21 |
import os
|
22 |
+
import logging
|
23 |
import sys
|
24 |
from dataclasses import dataclass, field
|
25 |
from pathlib import Path
|
|
|
43 |
from flax.training.common_utils import get_metrics, onehot, shard, shard_prng_key
|
44 |
from transformers import (
|
45 |
AutoTokenizer,
|
|
|
46 |
HfArgumentParser,
|
47 |
TrainingArguments,
|
48 |
)
|
|
|
51 |
import wandb
|
52 |
|
53 |
from dalle_mini.text import TextNormalizer
|
54 |
+
from dalle_mini.model import CustomFlaxBartForConditionalGeneration
|
55 |
|
56 |
+
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
|
59 |
@dataclass
|
|
|
63 |
"""
|
64 |
|
65 |
model_name_or_path: Optional[str] = field(
|
66 |
+
default=None,
|
67 |
metadata={
|
68 |
"help": "The model checkpoint for weights initialization."
|
69 |
"Don't set if you want to train a model from scratch."
|
70 |
},
|
71 |
)
|
72 |
+
image_vocab_size: Optional[int] = field(
|
73 |
default=None,
|
74 |
+
metadata={"help": "Vocab size of image encoder"},
|
75 |
+
)
|
76 |
+
image_length: Optional[int] = field(
|
77 |
+
default=None,
|
78 |
+
metadata={"help": "Number of tokens per image"},
|
79 |
)
|
80 |
+
tokenizer_name: Optional[str] = field(
|
81 |
+
default=None,
|
82 |
metadata={
|
83 |
+
"help": "Pretrained tokenizer name or path if not the same as model_name_or_path"
|
84 |
},
|
85 |
)
|
86 |
+
normalize_text: bool = field(
|
87 |
+
default=False,
|
88 |
+
metadata={"help": "Whether to normalize text or not."},
|
89 |
+
)
|
90 |
dtype: Optional[str] = field(
|
91 |
default="float32",
|
92 |
metadata={
|
|
|
155 |
default=False,
|
156 |
metadata={"help": "Whether to use decay in the learning rate scheduler."},
|
157 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
max_train_samples: Optional[int] = field(
|
159 |
default=None,
|
160 |
metadata={
|
|
|
169 |
"value if set."
|
170 |
},
|
171 |
)
|
|
|
|
|
|
|
|
|
172 |
preprocessing_num_workers: Optional[int] = field(
|
173 |
default=80, # ensure we have the same datasets cached data and avoid using too much space
|
174 |
metadata={"help": "The number of processes to use for the preprocessing."},
|
|
|
220 |
"json",
|
221 |
"jsonl",
|
222 |
], "`validation_file` should be a tsv, csv or json file."
|
|
|
|
|
223 |
if self.streaming and (self.len_train is None or self.len_eval is None):
|
224 |
raise ValueError(
|
225 |
"Streaming requires providing length of training and validation datasets"
|
|
|
248 |
return self.replace(step=new_step, opt_state=new_opt_state)
|
249 |
|
250 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
251 |
def data_loader(
|
252 |
rng: jax.random.PRNGKey, dataset: Dataset, batch_size: int, shuffle: bool = False
|
253 |
):
|
|
|
351 |
)
|
352 |
|
353 |
# Make one log on every process with the configuration for debugging.
|
354 |
+
logging.basicConfig(
|
355 |
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
356 |
datefmt="%m/%d/%Y %H:%M:%S",
|
357 |
+
level=logging.INFO,
|
358 |
)
|
359 |
# Setup logging, we only want one process per machine to log things on the screen.
|
360 |
+
logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR)
|
361 |
if jax.process_index() == 0:
|
362 |
datasets.utils.logging.set_verbosity_warning()
|
363 |
transformers.utils.logging.set_verbosity_info()
|
|
|
394 |
if model_args.from_checkpoint is not None:
|
395 |
artifact = wandb.run.use_artifact(model_args.from_checkpoint)
|
396 |
artifact_dir = artifact.download()
|
397 |
+
|
398 |
+
# load model
|
399 |
model = CustomFlaxBartForConditionalGeneration.from_pretrained(artifact_dir)
|
400 |
|
401 |
# load tokenizer
|
402 |
tokenizer = AutoTokenizer.from_pretrained(
|
403 |
artifact_dir,
|
404 |
+
use_fast=True,
|
405 |
)
|
406 |
|
407 |
else:
|
408 |
# Set up our new model config
|
409 |
+
# TODO: simplify with custom config class
|
410 |
config = BartConfig.from_pretrained(model_args.model_name_or_path)
|
411 |
+
config.image_vocab_size = model_args.image_vocab_size
|
412 |
+
config.image_length = model_args.image_length
|
413 |
+
# we append decoder bos to image vocab
|
414 |
+
config.decoder_start_token_id = config.image_vocab_size
|
415 |
+
# ensure we don't generate bos (in addition to decoder start token)
|
416 |
+
config.force_bos_token_to_be_generated = False
|
|
|
|
|
|
|
417 |
config.forced_bos_token_id = None # we don't need this token
|
418 |
config.forced_eos_token_id = None # we don't need this token
|
419 |
+
|
420 |
+
config.tie_word_embeddings = False
|
421 |
+
config.min_length = model_args.image_length + 1
|
422 |
+
config.max_length = model_args.image_length + 1
|
423 |
+
|
424 |
+
# below tokens need to be set to avoid error during generation (converted to jnp.array)
|
425 |
+
# they are not expected to be used and are set to unreachable token id
|
426 |
+
config.bos_token_id = config.image_vocab_size + 1
|
427 |
+
config.pos_token_id = config.image_vocab_size + 1
|
428 |
+
config.eos_token_id = config.image_vocab_size + 1
|
429 |
+
|
430 |
+
# save whether we normalize the text
|
431 |
+
config.normalize_text = model_args.normalize_text
|
432 |
|
433 |
# Create a custom model and initialize it randomly
|
434 |
+
model = CustomFlaxBartForConditionalGeneration.from_config(
|
435 |
config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype)
|
436 |
)
|
437 |
|
438 |
# Load tokenizer
|
439 |
+
if model_args.tokenizer_name is not None:
|
440 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
441 |
+
model_args.tokenizer_name, use_fast=True
|
442 |
+
)
|
443 |
+
else:
|
444 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
445 |
+
model_args.model_name_or_path,
|
446 |
+
use_fast=True,
|
447 |
+
)
|
448 |
|
449 |
print(f"TPUs: {jax.device_count()}")
|
450 |
assert jax.device_count() == 8, "TPUs in use, please check running processes"
|
|
|
467 |
shifted_input_ids[:, 0] = decoder_start_token_id
|
468 |
return shifted_input_ids
|
469 |
|
470 |
+
text_normalizer = TextNormalizer() if model.config.normalize_text else None
|
471 |
|
472 |
def normalize_text(example):
|
473 |
example[text_column] = text_normalizer(example[text_column])
|
|
|
514 |
)
|
515 |
if data_args.streaming:
|
516 |
train_dataset = train_dataset.shuffle(1000, training_args.seed)
|
517 |
+
if model.config.normalize_text:
|
518 |
train_dataset = (
|
519 |
train_dataset.map(normalize_text)
|
520 |
if data_args.streaming
|
|
|
551 |
if data_args.streaming
|
552 |
else eval_dataset.select(range(data_args.max_train_samples))
|
553 |
)
|
554 |
+
if model.config.normalize_text:
|
555 |
eval_dataset = (
|
556 |
eval_dataset.map(normalize_text)
|
557 |
if data_args.streaming
|