Spaces:
Running
Running
Pedro Cuenca
commited on
Commit
•
82fad8c
1
Parent(s):
b4dfea0
Notebook to encode splitted YFCC100M files.
Browse filesFile paths need to be updated.
Splits can be created using a command like:
```
mkdir metadata_splitted
cd metadata_splitted
split -l 500000 --numeric-suffixes ../metadata_YFCC100M.jsonl metadata_split_
```
Encoded files will be saved to the directory specified by
`yfcc100m_output`, and their names will be the same as the source
splits.
encoding/vqgan-jax-encoding-yfcc100m-splitted.ipynb
ADDED
@@ -0,0 +1,462 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"id": "d0b72877",
|
6 |
+
"metadata": {},
|
7 |
+
"source": [
|
8 |
+
"# vqgan-jax-encoding-yfcc100m"
|
9 |
+
]
|
10 |
+
},
|
11 |
+
{
|
12 |
+
"cell_type": "markdown",
|
13 |
+
"id": "747733a4",
|
14 |
+
"metadata": {},
|
15 |
+
"source": [
|
16 |
+
"Same as `vqgan-jax-encoding-with-captions`, but for YFCC100M.\n",
|
17 |
+
"\n",
|
18 |
+
"This dataset was prepared by @borisdayma in Json lines format."
|
19 |
+
]
|
20 |
+
},
|
21 |
+
{
|
22 |
+
"cell_type": "code",
|
23 |
+
"execution_count": 1,
|
24 |
+
"id": "3b59489e",
|
25 |
+
"metadata": {},
|
26 |
+
"outputs": [],
|
27 |
+
"source": [
|
28 |
+
"import io\n",
|
29 |
+
"\n",
|
30 |
+
"import requests\n",
|
31 |
+
"from PIL import Image\n",
|
32 |
+
"import numpy as np\n",
|
33 |
+
"from tqdm import tqdm\n",
|
34 |
+
"\n",
|
35 |
+
"import torch\n",
|
36 |
+
"import torchvision.transforms as T\n",
|
37 |
+
"import torchvision.transforms.functional as TF\n",
|
38 |
+
"from torchvision.transforms import InterpolationMode\n",
|
39 |
+
"from torch.utils.data import Dataset, DataLoader\n",
|
40 |
+
"from torchvision.datasets.folder import default_loader\n",
|
41 |
+
"\n",
|
42 |
+
"import jax\n",
|
43 |
+
"from jax import pmap"
|
44 |
+
]
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"cell_type": "markdown",
|
48 |
+
"id": "511c3b9e",
|
49 |
+
"metadata": {},
|
50 |
+
"source": [
|
51 |
+
"## VQGAN-JAX model"
|
52 |
+
]
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"cell_type": "markdown",
|
56 |
+
"id": "bb408f6c",
|
57 |
+
"metadata": {},
|
58 |
+
"source": [
|
59 |
+
"`dalle_mini` is a local package that contains the VQGAN-JAX model and other utilities."
|
60 |
+
]
|
61 |
+
},
|
62 |
+
{
|
63 |
+
"cell_type": "code",
|
64 |
+
"execution_count": 2,
|
65 |
+
"id": "2ca50dc7",
|
66 |
+
"metadata": {},
|
67 |
+
"outputs": [],
|
68 |
+
"source": [
|
69 |
+
"from dalle_mini.vqgan_jax.modeling_flax_vqgan import VQModel"
|
70 |
+
]
|
71 |
+
},
|
72 |
+
{
|
73 |
+
"cell_type": "markdown",
|
74 |
+
"id": "7b60da9a",
|
75 |
+
"metadata": {},
|
76 |
+
"source": [
|
77 |
+
"We'll use a VQGAN trained by using Taming Transformers and converted to a JAX model."
|
78 |
+
]
|
79 |
+
},
|
80 |
+
{
|
81 |
+
"cell_type": "code",
|
82 |
+
"execution_count": 4,
|
83 |
+
"id": "29ce8b15",
|
84 |
+
"metadata": {},
|
85 |
+
"outputs": [],
|
86 |
+
"source": [
|
87 |
+
"model = VQModel.from_pretrained(\"flax-community/vqgan_f16_16384\")"
|
88 |
+
]
|
89 |
+
},
|
90 |
+
{
|
91 |
+
"cell_type": "markdown",
|
92 |
+
"id": "c7c4c1e6",
|
93 |
+
"metadata": {},
|
94 |
+
"source": [
|
95 |
+
"## Dataset"
|
96 |
+
]
|
97 |
+
},
|
98 |
+
{
|
99 |
+
"cell_type": "markdown",
|
100 |
+
"id": "fd4c608e",
|
101 |
+
"metadata": {},
|
102 |
+
"source": [
|
103 |
+
"I splitted the files to do the process iteratively. Pandas struggles with memory and `datasets` has problems when filtering files, as described [in this issue](https://github.com/huggingface/datasets/issues/2644)."
|
104 |
+
]
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"cell_type": "code",
|
108 |
+
"execution_count": 5,
|
109 |
+
"id": "6c058636",
|
110 |
+
"metadata": {},
|
111 |
+
"outputs": [],
|
112 |
+
"source": [
|
113 |
+
"import pandas as pd\n",
|
114 |
+
"from pathlib import Path"
|
115 |
+
]
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"cell_type": "code",
|
119 |
+
"execution_count": 6,
|
120 |
+
"id": "81b19eca",
|
121 |
+
"metadata": {},
|
122 |
+
"outputs": [],
|
123 |
+
"source": [
|
124 |
+
"yfcc100m = Path('/sddata/dalle-mini/YFCC100M_OpenAI_subset')\n",
|
125 |
+
"# Images are 'sharded' from the following directory\n",
|
126 |
+
"yfcc100m_images = yfcc100m/'data'/'images'\n",
|
127 |
+
"yfcc100m_metadata_splits = yfcc100m/'metadata_splitted'\n",
|
128 |
+
"yfcc100m_output = yfcc100m/'metadata_encoded'"
|
129 |
+
]
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"cell_type": "code",
|
133 |
+
"execution_count": 7,
|
134 |
+
"id": "40873de9",
|
135 |
+
"metadata": {},
|
136 |
+
"outputs": [
|
137 |
+
{
|
138 |
+
"data": {
|
139 |
+
"text/plain": [
|
140 |
+
"[PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_04'),\n",
|
141 |
+
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_25'),\n",
|
142 |
+
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_17'),\n",
|
143 |
+
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_10'),\n",
|
144 |
+
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_22'),\n",
|
145 |
+
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_28'),\n",
|
146 |
+
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_09'),\n",
|
147 |
+
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_03'),\n",
|
148 |
+
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_07'),\n",
|
149 |
+
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_26'),\n",
|
150 |
+
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_14'),\n",
|
151 |
+
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_19'),\n",
|
152 |
+
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_13'),\n",
|
153 |
+
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_21'),\n",
|
154 |
+
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_00'),\n",
|
155 |
+
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_02'),\n",
|
156 |
+
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_08'),\n",
|
157 |
+
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_11'),\n",
|
158 |
+
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_29'),\n",
|
159 |
+
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_23'),\n",
|
160 |
+
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_24'),\n",
|
161 |
+
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_16'),\n",
|
162 |
+
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_05'),\n",
|
163 |
+
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_01'),\n",
|
164 |
+
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_12'),\n",
|
165 |
+
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_18'),\n",
|
166 |
+
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_20'),\n",
|
167 |
+
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_27'),\n",
|
168 |
+
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_15'),\n",
|
169 |
+
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_06')]"
|
170 |
+
]
|
171 |
+
},
|
172 |
+
"execution_count": 7,
|
173 |
+
"metadata": {},
|
174 |
+
"output_type": "execute_result"
|
175 |
+
}
|
176 |
+
],
|
177 |
+
"source": [
|
178 |
+
"all_splits = [x for x in yfcc100m_metadata_splits.iterdir() if x.is_file()]\n",
|
179 |
+
"all_splits"
|
180 |
+
]
|
181 |
+
},
|
182 |
+
{
|
183 |
+
"cell_type": "markdown",
|
184 |
+
"id": "f604e3c9",
|
185 |
+
"metadata": {},
|
186 |
+
"source": [
|
187 |
+
"### Cleanup"
|
188 |
+
]
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"cell_type": "code",
|
192 |
+
"execution_count": 8,
|
193 |
+
"id": "dea06b92",
|
194 |
+
"metadata": {},
|
195 |
+
"outputs": [],
|
196 |
+
"source": [
|
197 |
+
"def image_exists(root: str, name: str, ext: str):\n",
|
198 |
+
" image_path = (Path(root)/name[0:3]/name[3:6]/name).with_suffix(ext)\n",
|
199 |
+
" return image_path.exists()"
|
200 |
+
]
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"cell_type": "code",
|
204 |
+
"execution_count": 9,
|
205 |
+
"id": "1d34d7aa",
|
206 |
+
"metadata": {},
|
207 |
+
"outputs": [],
|
208 |
+
"source": [
|
209 |
+
"class YFC100Dataset(Dataset):\n",
|
210 |
+
" def __init__(self, image_list: pd.DataFrame, images_root: str, image_size: int, max_items=None):\n",
|
211 |
+
" \"\"\"\n",
|
212 |
+
" :param image_list: DataFrame with clean entries - all images must exist.\n",
|
213 |
+
" :param images_root: Root directory containing the images\n",
|
214 |
+
" :param image_size: Image size. Source images will be resized and center-cropped.\n",
|
215 |
+
" :max_items: Limit dataset size for debugging\n",
|
216 |
+
" \"\"\"\n",
|
217 |
+
" self.image_list = image_list\n",
|
218 |
+
" self.images_root = Path(images_root)\n",
|
219 |
+
" if max_items is not None: self.image_list = self.image_list[:max_items]\n",
|
220 |
+
" self.image_size = image_size\n",
|
221 |
+
" \n",
|
222 |
+
" def __len__(self):\n",
|
223 |
+
" return len(self.image_list)\n",
|
224 |
+
" \n",
|
225 |
+
" def _get_raw_image(self, i):\n",
|
226 |
+
" image_name = self.image_list.iloc[0].key\n",
|
227 |
+
" image_path = (self.images_root/image_name[0:3]/image_name[3:6]/image_name).with_suffix('.jpg')\n",
|
228 |
+
" return default_loader(image_path)\n",
|
229 |
+
" \n",
|
230 |
+
" def resize_image(self, image):\n",
|
231 |
+
" s = min(image.size)\n",
|
232 |
+
" r = self.image_size / s\n",
|
233 |
+
" s = (round(r * image.size[1]), round(r * image.size[0]))\n",
|
234 |
+
" image = TF.resize(image, s, interpolation=InterpolationMode.LANCZOS)\n",
|
235 |
+
" image = TF.center_crop(image, output_size = 2 * [self.image_size])\n",
|
236 |
+
" # FIXME: np.array is necessary in my installation, but it should be automatic\n",
|
237 |
+
" image = torch.unsqueeze(T.ToTensor()(np.array(image)), 0)\n",
|
238 |
+
" image = image.permute(0, 2, 3, 1).numpy()\n",
|
239 |
+
" return image\n",
|
240 |
+
" \n",
|
241 |
+
" def __getitem__(self, i):\n",
|
242 |
+
" image = self._get_raw_image(i)\n",
|
243 |
+
" image = self.resize_image(image)\n",
|
244 |
+
" # Just return the image, not the caption\n",
|
245 |
+
" return image"
|
246 |
+
]
|
247 |
+
},
|
248 |
+
{
|
249 |
+
"cell_type": "markdown",
|
250 |
+
"id": "62ad01c3",
|
251 |
+
"metadata": {},
|
252 |
+
"source": [
|
253 |
+
"## Encoding"
|
254 |
+
]
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"cell_type": "code",
|
258 |
+
"execution_count": 10,
|
259 |
+
"id": "88f36d0b",
|
260 |
+
"metadata": {},
|
261 |
+
"outputs": [],
|
262 |
+
"source": [
|
263 |
+
"def encode(model, batch):\n",
|
264 |
+
" print(\"jitting encode function\")\n",
|
265 |
+
" _, indices = model.encode(batch)\n",
|
266 |
+
"\n",
|
267 |
+
"# # FIXME: The model does not run in my computer (no cudNN currently installed) - faking it\n",
|
268 |
+
"# indices = np.random.randint(0, 16384, (batch.shape[0], 256))\n",
|
269 |
+
" return indices"
|
270 |
+
]
|
271 |
+
},
|
272 |
+
{
|
273 |
+
"cell_type": "code",
|
274 |
+
"execution_count": null,
|
275 |
+
"id": "d1f45dd8",
|
276 |
+
"metadata": {},
|
277 |
+
"outputs": [],
|
278 |
+
"source": [
|
279 |
+
"#FIXME\n",
|
280 |
+
"# import random\n",
|
281 |
+
"# model = {}"
|
282 |
+
]
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"cell_type": "code",
|
286 |
+
"execution_count": 11,
|
287 |
+
"id": "1f35f0cb",
|
288 |
+
"metadata": {},
|
289 |
+
"outputs": [],
|
290 |
+
"source": [
|
291 |
+
"from flax.training.common_utils import shard\n",
|
292 |
+
"\n",
|
293 |
+
"def superbatch_generator(dataloader):\n",
|
294 |
+
" iter_loader = iter(dataloader)\n",
|
295 |
+
" for batch in iter_loader:\n",
|
296 |
+
" batch = batch.squeeze(1)\n",
|
297 |
+
" # Skip incomplete last batch\n",
|
298 |
+
" if batch.shape[0] == dataloader.batch_size:\n",
|
299 |
+
" yield shard(batch)"
|
300 |
+
]
|
301 |
+
},
|
302 |
+
{
|
303 |
+
"cell_type": "code",
|
304 |
+
"execution_count": 13,
|
305 |
+
"id": "2210705b",
|
306 |
+
"metadata": {},
|
307 |
+
"outputs": [],
|
308 |
+
"source": [
|
309 |
+
"import os\n",
|
310 |
+
"import jax\n",
|
311 |
+
"\n",
|
312 |
+
"def encode_captioned_dataset(dataset, output_jsonl, batch_size=32, num_workers=16):\n",
|
313 |
+
" if os.path.isfile(output_jsonl):\n",
|
314 |
+
" print(f\"Destination file {output_jsonl} already exists, please move away.\")\n",
|
315 |
+
" return\n",
|
316 |
+
" \n",
|
317 |
+
" num_tpus = jax.device_count()\n",
|
318 |
+
" dataloader = DataLoader(dataset, batch_size=num_tpus*batch_size, num_workers=num_workers)\n",
|
319 |
+
" superbatches = superbatch_generator(dataloader)\n",
|
320 |
+
" \n",
|
321 |
+
" p_encoder = pmap(lambda batch: encode(model, batch))\n",
|
322 |
+
"\n",
|
323 |
+
" # We save each superbatch to avoid reallocation of buffers as we process them.\n",
|
324 |
+
" # We keep the file open to prevent excessive file seeks.\n",
|
325 |
+
" with open(output_jsonl, \"w\") as file:\n",
|
326 |
+
" iterations = len(dataset) // (batch_size * num_tpus)\n",
|
327 |
+
" for n in tqdm(range(iterations)):\n",
|
328 |
+
" superbatch = next(superbatches)\n",
|
329 |
+
" encoded = p_encoder(superbatch.numpy())\n",
|
330 |
+
" encoded = encoded.reshape(-1, encoded.shape[-1])\n",
|
331 |
+
"\n",
|
332 |
+
" # Extract fields from the dataset internal `image_list` property, and save to disk\n",
|
333 |
+
" # We need to read from the df because the Dataset only returns images\n",
|
334 |
+
" start_index = n * batch_size * num_tpus\n",
|
335 |
+
" end_index = (n+1) * batch_size * num_tpus\n",
|
336 |
+
" keys = dataset.image_list[\"key\"][start_index:end_index].values\n",
|
337 |
+
" captions = dataset.image_list[\"caption\"][start_index:end_index].values\n",
|
338 |
+
"# encoded_as_string = list(map(lambda item: np.array2string(item, separator=',', max_line_width=50000, formatter={'int':lambda x: str(x)}), encoded))\n",
|
339 |
+
" batch_df = pd.DataFrame.from_dict({\"key\": keys, \"caption\": captions, \"encoding\": encoded})\n",
|
340 |
+
" batch_df.to_json(file, orient='records', lines=True)"
|
341 |
+
]
|
342 |
+
},
|
343 |
+
{
|
344 |
+
"cell_type": "code",
|
345 |
+
"execution_count": 14,
|
346 |
+
"id": "7704863d",
|
347 |
+
"metadata": {},
|
348 |
+
"outputs": [
|
349 |
+
{
|
350 |
+
"name": "stdout",
|
351 |
+
"output_type": "stream",
|
352 |
+
"text": [
|
353 |
+
"Processing /sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_04\n",
|
354 |
+
"54024 selected from 500000 total entries\n"
|
355 |
+
]
|
356 |
+
},
|
357 |
+
{
|
358 |
+
"name": "stderr",
|
359 |
+
"output_type": "stream",
|
360 |
+
"text": [
|
361 |
+
"INFO:absl:Starting the local TPU driver.\n",
|
362 |
+
"INFO:absl:Unable to initialize backend 'tpu_driver': Not found: Unable to find driver in registry given worker: local://\n",
|
363 |
+
"INFO:absl:Unable to initialize backend 'tpu': Invalid argument: TpuPlatform is not available.\n",
|
364 |
+
" 0%| | 0/31 [00:00<?, ?it/s]"
|
365 |
+
]
|
366 |
+
},
|
367 |
+
{
|
368 |
+
"name": "stdout",
|
369 |
+
"output_type": "stream",
|
370 |
+
"text": [
|
371 |
+
"jitting encode function\n"
|
372 |
+
]
|
373 |
+
},
|
374 |
+
{
|
375 |
+
"name": "stderr",
|
376 |
+
"output_type": "stream",
|
377 |
+
"text": [
|
378 |
+
"100%|███████████████████████████████████████████████████████████████████████████████| 31/31 [00:02<00:00, 10.61it/s]\n"
|
379 |
+
]
|
380 |
+
},
|
381 |
+
{
|
382 |
+
"name": "stdout",
|
383 |
+
"output_type": "stream",
|
384 |
+
"text": [
|
385 |
+
"Processing /sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_25\n",
|
386 |
+
"99530 selected from 500000 total entries\n"
|
387 |
+
]
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"name": "stderr",
|
391 |
+
"output_type": "stream",
|
392 |
+
"text": [
|
393 |
+
" 3%|██▌ | 1/31 [00:01<00:53, 1.79s/it]"
|
394 |
+
]
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"name": "stdout",
|
398 |
+
"output_type": "stream",
|
399 |
+
"text": [
|
400 |
+
"jitting encode function\n"
|
401 |
+
]
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"name": "stderr",
|
405 |
+
"output_type": "stream",
|
406 |
+
"text": [
|
407 |
+
"100%|███████████████████████████████████████████████████████████████████████████████| 31/31 [00:03<00:00, 9.92it/s]\n"
|
408 |
+
]
|
409 |
+
}
|
410 |
+
],
|
411 |
+
"source": [
|
412 |
+
"for split in all_splits:\n",
|
413 |
+
" print(f\"Processing {split}\")\n",
|
414 |
+
" df = pd.read_json(split, orient=\"records\", lines=True)\n",
|
415 |
+
" df['image_exists'] = df.apply(lambda row: image_exists(yfcc100m_images, row['key'], '.' + row['ext']), axis=1)\n",
|
416 |
+
" print(f\"{len(df[df.image_exists])} selected from {len(df)} total entries\")\n",
|
417 |
+
" \n",
|
418 |
+
" df = df[df.image_exists]\n",
|
419 |
+
" captions = df.apply(lambda row: ' '.join([row[\"title_clean\"], row[\"description_clean\"]]), axis=1)\n",
|
420 |
+
" df[\"caption\"] = captions.values\n",
|
421 |
+
" \n",
|
422 |
+
" dataset = YFC100Dataset(\n",
|
423 |
+
" image_list = df,\n",
|
424 |
+
" images_root = yfcc100m_images,\n",
|
425 |
+
" image_size = 256,\n",
|
426 |
+
"# max_items = 2000,\n",
|
427 |
+
" )\n",
|
428 |
+
" \n",
|
429 |
+
" encode_captioned_dataset(dataset, yfcc100m_output/split.name, batch_size=64, num_workers=16)"
|
430 |
+
]
|
431 |
+
},
|
432 |
+
{
|
433 |
+
"cell_type": "markdown",
|
434 |
+
"id": "8953dd84",
|
435 |
+
"metadata": {},
|
436 |
+
"source": [
|
437 |
+
"----"
|
438 |
+
]
|
439 |
+
}
|
440 |
+
],
|
441 |
+
"metadata": {
|
442 |
+
"kernelspec": {
|
443 |
+
"display_name": "Python 3 (ipykernel)",
|
444 |
+
"language": "python",
|
445 |
+
"name": "python3"
|
446 |
+
},
|
447 |
+
"language_info": {
|
448 |
+
"codemirror_mode": {
|
449 |
+
"name": "ipython",
|
450 |
+
"version": 3
|
451 |
+
},
|
452 |
+
"file_extension": ".py",
|
453 |
+
"mimetype": "text/x-python",
|
454 |
+
"name": "python",
|
455 |
+
"nbconvert_exporter": "python",
|
456 |
+
"pygments_lexer": "ipython3",
|
457 |
+
"version": "3.8.10"
|
458 |
+
}
|
459 |
+
},
|
460 |
+
"nbformat": 4,
|
461 |
+
"nbformat_minor": 5
|
462 |
+
}
|