Spaces:
Running
Running
feat: update distributed_shampoo + fix None spec
Browse files- tools/train/distributed_shampoo.py +427 -61
tools/train/distributed_shampoo.py
CHANGED
@@ -1,7 +1,5 @@
|
|
1 |
-
"""File copied from https://github.com/google-research/google-research/edit/master/scalable_shampoo/optax/distributed_shampoo.py"""
|
2 |
-
|
3 |
# coding=utf-8
|
4 |
-
# Copyright
|
5 |
#
|
6 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
7 |
# you may not use this file except in compliance with the License.
|
@@ -147,6 +145,12 @@ class QuantizedValue:
|
|
147 |
return val
|
148 |
|
149 |
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
# Per parameter optimizer state used in data-parallel training.
|
151 |
class ParameterStats(NamedTuple):
|
152 |
"""State associated to each parameter of the model being trained."""
|
@@ -156,6 +160,7 @@ class ParameterStats(NamedTuple):
|
|
156 |
preconditioners: List[Any] # Preconditioners (QuantizedValue, chex.Array)
|
157 |
diagonal_momentum: QuantizedValue # Momentum for the diagonal preconditioner
|
158 |
momentum: QuantizedValue # Momentum for the shampoo preconditioner
|
|
|
159 |
|
160 |
|
161 |
# For training extremely large model; We keep a global state with a concatenated
|
@@ -166,6 +171,7 @@ class ParameterStats(NamedTuple):
|
|
166 |
class GlobalShardedParameterStats:
|
167 |
statistics: chex.Array # Statistics
|
168 |
preconditioners: chex.Array # Preconditioners
|
|
|
169 |
|
170 |
|
171 |
# These are per-parameter local states; All statistics here mirror the parameter
|
@@ -177,12 +183,34 @@ class LocalShardedParameterStats:
|
|
177 |
diagonal_statistics: QuantizedValue # Accumulator for diagonal preconditioner
|
178 |
diagonal_momentum: QuantizedValue # Momentum for the diagonal preconditioner
|
179 |
momentum: QuantizedValue # Momentum for the shampoo preconditioner
|
|
|
180 |
index_start: np.int32 = struct.field(
|
181 |
pytree_node=False
|
182 |
) # Index into global statistics array
|
183 |
sizes: Any = struct.field(pytree_node=False) # Sizes of the statistics.
|
184 |
|
185 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
186 |
class ShardedShampooStats(NamedTuple):
|
187 |
"""Shampoo state in sharded mode."""
|
188 |
|
@@ -195,6 +223,12 @@ class ShampooState(NamedTuple):
|
|
195 |
stats: Any
|
196 |
|
197 |
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
class GraftingType(enum.IntEnum):
|
199 |
SGD = 1
|
200 |
ADAGRAD = 2
|
@@ -292,6 +326,8 @@ def matrix_inverse_pth_root(
|
|
292 |
matrix^(-1/p)
|
293 |
"""
|
294 |
|
|
|
|
|
295 |
# We use float32 for the matrix inverse pth root.
|
296 |
# Switch to f64 if you have hardware that supports it.
|
297 |
matrix_size = matrix.shape[0]
|
@@ -615,6 +651,7 @@ def _convert_to_parameter_stats(global_stats, local_stat):
|
|
615 |
new_preconditioners,
|
616 |
local_stat.diagonal_momentum,
|
617 |
local_stat.momentum,
|
|
|
618 |
)
|
619 |
|
620 |
|
@@ -624,11 +661,40 @@ def _convert_from_parameter_stats(parameter_stats, local_stats):
|
|
624 |
parameter_stats.diagonal_statistics,
|
625 |
parameter_stats.diagonal_momentum,
|
626 |
parameter_stats.momentum,
|
|
|
627 |
local_stats.index_start,
|
628 |
local_stats.sizes,
|
629 |
)
|
630 |
|
631 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
632 |
def batch(x, num_devices):
|
633 |
"""Batch `x` so that so that leading axis is num_devices."""
|
634 |
n = len(x)
|
@@ -670,7 +736,8 @@ def distributed_shampoo(
|
|
670 |
batch_axis_name=None,
|
671 |
### Only set following 3 params in pjit/spmd mode.
|
672 |
### WARNING: Experimental
|
673 |
-
|
|
|
674 |
num_devices_for_pjit=None,
|
675 |
shard_optimizer_states=False,
|
676 |
###
|
@@ -730,7 +797,8 @@ def distributed_shampoo(
|
|
730 |
exponent_override: Override the exponent used in matrix inverse.
|
731 |
batch_axis_name: labeled axis over pmap for data-parallel training the
|
732 |
optimizer used for.
|
733 |
-
|
|
|
734 |
num_devices_for_pjit: Number of devices to parallelize over when using pjit.
|
735 |
shard_optimizer_states: Shard optimizer states to save memory in model
|
736 |
parallel training.
|
@@ -830,6 +898,11 @@ def distributed_shampoo(
|
|
830 |
)
|
831 |
|
832 |
def sharded_init_fn(params):
|
|
|
|
|
|
|
|
|
|
|
833 |
params_flat, treedef = jax.tree_flatten(params)
|
834 |
# Find max size to pad to.
|
835 |
max_size = 0
|
@@ -845,6 +918,7 @@ def distributed_shampoo(
|
|
845 |
padded_statistics = []
|
846 |
padded_preconditioners = []
|
847 |
local_stats_flat = []
|
|
|
848 |
for param in params_flat:
|
849 |
preconditioner = Preconditioner(
|
850 |
param, block_size, best_effort_shape_interpretation
|
@@ -862,6 +936,12 @@ def distributed_shampoo(
|
|
862 |
preconditioners = [jnp.eye(max_size) for s in shapes]
|
863 |
padded_statistics.extend(statistics)
|
864 |
padded_preconditioners.extend(preconditioners)
|
|
|
|
|
|
|
|
|
|
|
|
|
865 |
|
866 |
diagonal_statistics = []
|
867 |
if graft_type != GraftingType.SGD:
|
@@ -871,6 +951,7 @@ def distributed_shampoo(
|
|
871 |
_quantize_diagonal_statistics(diagonal_statistics),
|
872 |
_quantize_momentum(jnp.zeros_like(param)),
|
873 |
_quantize_momentum(jnp.zeros_like(param)),
|
|
|
874 |
index_start,
|
875 |
sizes,
|
876 |
)
|
@@ -888,14 +969,238 @@ def distributed_shampoo(
|
|
888 |
padded_preconditioners.extend(
|
889 |
[jnp.eye(max_size, dtype=padded_statistics[0].dtype) for _ in range(to_pad)]
|
890 |
)
|
|
|
891 |
global_stats = GlobalShardedParameterStats(
|
892 |
-
jnp.stack(padded_statistics),
|
|
|
|
|
893 |
)
|
894 |
return ShampooState(
|
895 |
count=jnp.zeros([], jnp.int32),
|
896 |
stats=ShardedShampooStats(global_stats, local_stats),
|
897 |
)
|
898 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
899 |
def sharded_update_fn(grads, state, params):
|
900 |
"""Transform the input gradient and update all statistics in sharded mode.
|
901 |
|
@@ -923,20 +1228,6 @@ def distributed_shampoo(
|
|
923 |
params_flat,
|
924 |
)
|
925 |
|
926 |
-
exponents = []
|
927 |
-
for stat, param in zip(new_stats_flat, params_flat):
|
928 |
-
num_statistics = len(stat.statistics)
|
929 |
-
if num_statistics > 0:
|
930 |
-
preconditioner = Preconditioner(
|
931 |
-
param, block_size, best_effort_shape_interpretation
|
932 |
-
)
|
933 |
-
exponent = (
|
934 |
-
preconditioner.exponent_for_preconditioner()
|
935 |
-
if exponent_override == 0
|
936 |
-
else exponent_override
|
937 |
-
)
|
938 |
-
exponents.extend([exponent] * num_statistics)
|
939 |
-
|
940 |
outputs = jax.tree_multimap(
|
941 |
lambda g, s, p: _transform_grad(g, s, p, state.count),
|
942 |
grads_flat,
|
@@ -951,7 +1242,6 @@ def distributed_shampoo(
|
|
951 |
_convert_from_parameter_stats(new_stat, local_stat)
|
952 |
for new_stat, local_stat in zip(new_stats_flat, local_stats_flat)
|
953 |
]
|
954 |
-
new_local_stats = jax.tree_unflatten(treedef, new_local_stats_flat)
|
955 |
|
956 |
max_size = global_stats.statistics.shape[1]
|
957 |
new_padded_statistics = []
|
@@ -974,22 +1264,16 @@ def distributed_shampoo(
|
|
974 |
for _ in range(to_pad)
|
975 |
]
|
976 |
)
|
977 |
-
exponents.extend([1 for _ in range(to_pad)])
|
978 |
new_stacked_padded_statistics = jnp.stack(new_padded_statistics)
|
979 |
-
|
980 |
-
|
981 |
-
|
982 |
-
mi_pth_root = functools.partial(
|
983 |
-
matrix_inverse_pth_root,
|
984 |
-
ridge_epsilon=matrix_epsilon,
|
985 |
-
precision=precision,
|
986 |
-
)
|
987 |
-
preconditioners, errors = jax.vmap(mi_pth_root)(xs, ps)
|
988 |
-
return preconditioners, errors
|
989 |
|
990 |
def _internal_inverse_pth_root_all():
|
991 |
-
preconditioners, errors =
|
992 |
-
new_stacked_padded_statistics,
|
|
|
|
|
993 |
)
|
994 |
return preconditioners, errors
|
995 |
|
@@ -1000,13 +1284,18 @@ def distributed_shampoo(
|
|
1000 |
# shaped tensors. Note statistics will be ignored as we are passing in
|
1001 |
# a large init value for error.
|
1002 |
preconditioners_init = new_stacked_padded_statistics
|
1003 |
-
|
|
|
1004 |
init_state = [preconditioners_init, errors_init]
|
1005 |
perform_step = state.count % preconditioning_compute_steps == 0
|
1006 |
new_preconditioners, errors = efficient_cond(
|
1007 |
perform_step, _internal_inverse_pth_root_all, init_state
|
1008 |
)
|
1009 |
|
|
|
|
|
|
|
|
|
1010 |
errors = errors.reshape((-1, 1, 1))
|
1011 |
predicate = jnp.logical_or(
|
1012 |
jnp.isnan(errors), errors >= inverse_failure_threshold
|
@@ -1017,7 +1306,9 @@ def distributed_shampoo(
|
|
1017 |
+ (1.0 - predicate) * new_preconditioners
|
1018 |
)
|
1019 |
new_global_stats = GlobalShardedParameterStats(
|
1020 |
-
new_stacked_padded_statistics,
|
|
|
|
|
1021 |
)
|
1022 |
new_shampoo_state = ShampooState(
|
1023 |
count=state.count + 1,
|
@@ -1048,6 +1339,7 @@ def distributed_shampoo(
|
|
1048 |
_maybe_quantize_preconditioners(preconditioners),
|
1049 |
_quantize_momentum(jnp.zeros_like(param)),
|
1050 |
_quantize_momentum(jnp.zeros_like(param)),
|
|
|
1051 |
)
|
1052 |
|
1053 |
return ShampooState(
|
@@ -1092,6 +1384,7 @@ def distributed_shampoo(
|
|
1092 |
state.preconditioners,
|
1093 |
state.diagonal_momentum,
|
1094 |
state.momentum,
|
|
|
1095 |
)
|
1096 |
|
1097 |
def _matrix_inverse_pth_root_vmap(xs, ps):
|
@@ -1115,33 +1408,27 @@ def distributed_shampoo(
|
|
1115 |
|
1116 |
return jax.vmap(matrix_inverse_pth_root_wrapper)(qxs, qds, qbs, ps)
|
1117 |
|
1118 |
-
def _matrix_inverse_pth_root_pjit(xs, ps):
|
1119 |
-
mesh_axis_names_tuple = tuple(mesh_axis_names)
|
1120 |
# Partition the concatenated statistics matrix across all cores.
|
1121 |
-
|
1122 |
-
|
1123 |
-
|
1124 |
-
|
1125 |
-
|
1126 |
-
),
|
1127 |
-
)(xs, ps)
|
1128 |
# Run matrix inverse pth root on each shard.
|
1129 |
partitioned_preconditioners, partitioned_errors = _matrix_inverse_pth_root_vmap(
|
1130 |
partitioned_xs, partitioned_ps
|
1131 |
)
|
|
|
|
|
|
|
|
|
|
|
1132 |
# Recombine the outputs at each core.
|
1133 |
-
preconditioners
|
1134 |
-
|
1135 |
-
|
1136 |
-
|
1137 |
-
mesh_axis_names_tuple,
|
1138 |
-
),
|
1139 |
-
pjit.PartitionSpec(
|
1140 |
-
mesh_axis_names_tuple,
|
1141 |
-
),
|
1142 |
-
),
|
1143 |
-
out_axis_resources=(None, None),
|
1144 |
-
)(partitioned_preconditioners, partitioned_errors)
|
1145 |
return preconditioners, errors
|
1146 |
|
1147 |
def _pmap_compute_preconditioners(
|
@@ -1223,31 +1510,54 @@ def distributed_shampoo(
|
|
1223 |
)
|
1224 |
|
1225 |
new_preconditioners_flat = []
|
|
|
1226 |
for p, shape, prev_p, error in zip(
|
1227 |
preconditioners_flat, original_shapes, prev_preconditioners, errors_flat
|
1228 |
):
|
1229 |
new_preconditioners_flat.append(
|
1230 |
_select_preconditioner(error, p[: shape[0], : shape[1]], prev_p)
|
1231 |
)
|
|
|
1232 |
|
1233 |
assert len(states) == len(num_statistics_per_state)
|
1234 |
assert len(new_preconditioners_flat) == num_statistics
|
|
|
1235 |
|
1236 |
# Add back empty preconditioners so we that we can set the optimizer state.
|
1237 |
preconditioners_for_states = []
|
1238 |
idx = 0
|
|
|
1239 |
for num_statistics, state in zip(num_statistics_per_state, states):
|
1240 |
if num_statistics == 0:
|
1241 |
preconditioners_for_states.append([])
|
|
|
1242 |
else:
|
1243 |
preconditioners_for_state = new_preconditioners_flat[
|
1244 |
idx : idx + num_statistics
|
1245 |
]
|
1246 |
assert len(state.statistics) == len(preconditioners_for_state)
|
1247 |
preconditioners_for_states.append(preconditioners_for_state)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1248 |
idx += num_statistics
|
1249 |
new_states = []
|
1250 |
-
for state, new_preconditioners in zip(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1251 |
new_states.append(
|
1252 |
ParameterStats(
|
1253 |
state.diagonal_statistics,
|
@@ -1255,6 +1565,7 @@ def distributed_shampoo(
|
|
1255 |
new_preconditioners,
|
1256 |
state.diagonal_momentum,
|
1257 |
state.momentum,
|
|
|
1258 |
)
|
1259 |
)
|
1260 |
|
@@ -1413,6 +1724,7 @@ def distributed_shampoo(
|
|
1413 |
new_quantized_preconditioners_flat = []
|
1414 |
new_quantized_diagonals_flat = []
|
1415 |
new_quantized_bucket_sizes_flat = []
|
|
|
1416 |
for p, d, b, shape, prev_p, error in zip(
|
1417 |
quantized_preconditioners_flat,
|
1418 |
quantized_diagonals_flat,
|
@@ -1432,6 +1744,7 @@ def distributed_shampoo(
|
|
1432 |
new_quantized_bucket_sizes_flat.append(
|
1433 |
_select_preconditioner(error, b[: shape[0]], prev_p.bucket_size)
|
1434 |
)
|
|
|
1435 |
|
1436 |
assert len(states) == len(num_statistics_per_state)
|
1437 |
assert len(new_quantized_preconditioners_flat) == num_statistics
|
@@ -1440,10 +1753,12 @@ def distributed_shampoo(
|
|
1440 |
|
1441 |
# Add back empty preconditioners so we that we can set the optimizer state.
|
1442 |
preconditioners_for_states = []
|
|
|
1443 |
idx = 0
|
1444 |
for num_statistics, state in zip(num_statistics_per_state, states):
|
1445 |
if num_statistics == 0:
|
1446 |
preconditioners_for_states.append([])
|
|
|
1447 |
else:
|
1448 |
quantized_preconditioners_for_state = (
|
1449 |
new_quantized_preconditioners_flat[idx : idx + num_statistics]
|
@@ -1454,10 +1769,14 @@ def distributed_shampoo(
|
|
1454 |
quantized_bucket_sizes_for_state = new_quantized_bucket_sizes_flat[
|
1455 |
idx : idx + num_statistics
|
1456 |
]
|
|
|
|
|
|
|
1457 |
|
1458 |
assert len(state.statistics) == len(quantized_preconditioners_for_state)
|
1459 |
assert len(state.statistics) == len(quantized_diagonals_for_state)
|
1460 |
assert len(state.statistics) == len(quantized_bucket_sizes_for_state)
|
|
|
1461 |
|
1462 |
quantized_preconditioners = []
|
1463 |
for qv, qd, qb in zip(
|
@@ -1469,9 +1788,21 @@ def distributed_shampoo(
|
|
1469 |
QuantizedValue(qv, qd, qb, qv.dtype, True, list(qv.shape))
|
1470 |
)
|
1471 |
preconditioners_for_states.append(quantized_preconditioners)
|
|
|
1472 |
idx += num_statistics
|
1473 |
new_states = []
|
1474 |
-
for state, new_preconditioners in zip(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1475 |
new_states.append(
|
1476 |
ParameterStats(
|
1477 |
state.diagonal_statistics,
|
@@ -1479,6 +1810,7 @@ def distributed_shampoo(
|
|
1479 |
new_preconditioners,
|
1480 |
state.diagonal_momentum,
|
1481 |
state.momentum,
|
|
|
1482 |
)
|
1483 |
)
|
1484 |
|
@@ -1560,31 +1892,53 @@ def distributed_shampoo(
|
|
1560 |
)
|
1561 |
|
1562 |
new_preconditioners_flat = []
|
|
|
1563 |
for p, shape, prev_p, error in zip(
|
1564 |
preconditioners_flat, original_shapes, prev_preconditioners, errors_flat
|
1565 |
):
|
1566 |
new_preconditioners_flat.append(
|
1567 |
_select_preconditioner(error, p[: shape[0], : shape[1]], prev_p)
|
1568 |
)
|
|
|
1569 |
|
1570 |
assert len(states) == len(num_statistics_per_state)
|
1571 |
assert len(new_preconditioners_flat) == num_statistics
|
1572 |
|
1573 |
# Add back empty preconditioners so we that we can set the optimizer state.
|
1574 |
preconditioners_for_states = []
|
|
|
1575 |
idx = 0
|
1576 |
for num_statistics, state in zip(num_statistics_per_state, states):
|
1577 |
if num_statistics == 0:
|
1578 |
preconditioners_for_states.append([])
|
|
|
1579 |
else:
|
1580 |
preconditioners_for_state = new_preconditioners_flat[
|
1581 |
idx : idx + num_statistics
|
1582 |
]
|
1583 |
assert len(state.statistics) == len(preconditioners_for_state)
|
1584 |
preconditioners_for_states.append(preconditioners_for_state)
|
|
|
|
|
|
|
|
|
|
|
|
|
1585 |
idx += num_statistics
|
|
|
1586 |
new_states = []
|
1587 |
-
for state, new_preconditioners in zip(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1588 |
new_states.append(
|
1589 |
ParameterStats(
|
1590 |
state.diagonal_statistics,
|
@@ -1592,6 +1946,7 @@ def distributed_shampoo(
|
|
1592 |
new_preconditioners,
|
1593 |
state.diagonal_momentum,
|
1594 |
state.momentum,
|
|
|
1595 |
)
|
1596 |
)
|
1597 |
|
@@ -1778,7 +2133,9 @@ def distributed_shampoo(
|
|
1778 |
state.preconditioners,
|
1779 |
_quantize_momentum(grafting_update_with_wd_momentum),
|
1780 |
_quantize_momentum(shampoo_update_with_wd_momentum),
|
|
|
1781 |
)
|
|
|
1782 |
return transformed_update, param_stats
|
1783 |
|
1784 |
def update_fn(grads, state, params):
|
@@ -1821,6 +2178,15 @@ def distributed_shampoo(
|
|
1821 |
return updates, new_state
|
1822 |
|
1823 |
if shard_optimizer_states:
|
1824 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1825 |
else:
|
1826 |
return optax.GradientTransformation(init_fn, update_fn)
|
|
|
|
|
|
|
1 |
# coding=utf-8
|
2 |
+
# Copyright 2022 The Google Research Authors.
|
3 |
#
|
4 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
# you may not use this file except in compliance with the License.
|
|
|
145 |
return val
|
146 |
|
147 |
|
148 |
+
@struct.dataclass
|
149 |
+
class TrainingMetrics:
|
150 |
+
inverse_pth_root_errors: chex.Array # Error for inverse-pth roots.
|
151 |
+
# TODO(rohananil): Add more important metrics to track during training.
|
152 |
+
|
153 |
+
|
154 |
# Per parameter optimizer state used in data-parallel training.
|
155 |
class ParameterStats(NamedTuple):
|
156 |
"""State associated to each parameter of the model being trained."""
|
|
|
160 |
preconditioners: List[Any] # Preconditioners (QuantizedValue, chex.Array)
|
161 |
diagonal_momentum: QuantizedValue # Momentum for the diagonal preconditioner
|
162 |
momentum: QuantizedValue # Momentum for the shampoo preconditioner
|
163 |
+
training_metrics: TrainingMetrics # Metrics (optional for training).
|
164 |
|
165 |
|
166 |
# For training extremely large model; We keep a global state with a concatenated
|
|
|
171 |
class GlobalShardedParameterStats:
|
172 |
statistics: chex.Array # Statistics
|
173 |
preconditioners: chex.Array # Preconditioners
|
174 |
+
exponents: chex.Array # exponents
|
175 |
|
176 |
|
177 |
# These are per-parameter local states; All statistics here mirror the parameter
|
|
|
183 |
diagonal_statistics: QuantizedValue # Accumulator for diagonal preconditioner
|
184 |
diagonal_momentum: QuantizedValue # Momentum for the diagonal preconditioner
|
185 |
momentum: QuantizedValue # Momentum for the shampoo preconditioner
|
186 |
+
training_metrics: TrainingMetrics # Metrics (optional for training).
|
187 |
index_start: np.int32 = struct.field(
|
188 |
pytree_node=False
|
189 |
) # Index into global statistics array
|
190 |
sizes: Any = struct.field(pytree_node=False) # Sizes of the statistics.
|
191 |
|
192 |
|
193 |
+
def init_training_metrics(num_statistics):
|
194 |
+
if num_statistics:
|
195 |
+
return TrainingMetrics(jnp.zeros([num_statistics], jnp.float32))
|
196 |
+
else:
|
197 |
+
return TrainingMetrics([])
|
198 |
+
|
199 |
+
|
200 |
+
def init_training_metrics_shapes(num_statistics):
|
201 |
+
if num_statistics:
|
202 |
+
return TrainingMetrics([[num_statistics], jnp.float32])
|
203 |
+
else:
|
204 |
+
return TrainingMetrics([None, jnp.float32])
|
205 |
+
|
206 |
+
|
207 |
+
def init_training_metrics_pspec(num_statistics):
|
208 |
+
if num_statistics:
|
209 |
+
return TrainingMetrics(pjit.PartitionSpec())
|
210 |
+
else:
|
211 |
+
return TrainingMetrics(None)
|
212 |
+
|
213 |
+
|
214 |
class ShardedShampooStats(NamedTuple):
|
215 |
"""Shampoo state in sharded mode."""
|
216 |
|
|
|
223 |
stats: Any
|
224 |
|
225 |
|
226 |
+
class InitFnState(NamedTuple):
|
227 |
+
init_fn: Any
|
228 |
+
pspec_fn: Any
|
229 |
+
shape_and_dtype_fn: Any
|
230 |
+
|
231 |
+
|
232 |
class GraftingType(enum.IntEnum):
|
233 |
SGD = 1
|
234 |
ADAGRAD = 2
|
|
|
326 |
matrix^(-1/p)
|
327 |
"""
|
328 |
|
329 |
+
assert matrix.shape[0] == matrix.shape[1]
|
330 |
+
|
331 |
# We use float32 for the matrix inverse pth root.
|
332 |
# Switch to f64 if you have hardware that supports it.
|
333 |
matrix_size = matrix.shape[0]
|
|
|
651 |
new_preconditioners,
|
652 |
local_stat.diagonal_momentum,
|
653 |
local_stat.momentum,
|
654 |
+
local_stat.training_metrics,
|
655 |
)
|
656 |
|
657 |
|
|
|
661 |
parameter_stats.diagonal_statistics,
|
662 |
parameter_stats.diagonal_momentum,
|
663 |
parameter_stats.momentum,
|
664 |
+
parameter_stats.training_metrics,
|
665 |
local_stats.index_start,
|
666 |
local_stats.sizes,
|
667 |
)
|
668 |
|
669 |
|
670 |
+
def _add_error_into_local_stats(local_stats, errors, inverse_failure_threshold):
|
671 |
+
"""Adds errors back into local statistics."""
|
672 |
+
new_local_stats = []
|
673 |
+
for local_stat in local_stats:
|
674 |
+
index_start = int(local_stat.index_start)
|
675 |
+
index_end = int(len(local_stat.sizes)) + index_start
|
676 |
+
per_stat_error = errors[index_start:index_end]
|
677 |
+
if local_stat.sizes:
|
678 |
+
per_stat_error = jnp.where(
|
679 |
+
jnp.logical_and(
|
680 |
+
per_stat_error > 0.0, per_stat_error != inverse_failure_threshold
|
681 |
+
),
|
682 |
+
per_stat_error,
|
683 |
+
local_stat.training_metrics.inverse_pth_root_errors,
|
684 |
+
)
|
685 |
+
new_local_stats.append(
|
686 |
+
LocalShardedParameterStats(
|
687 |
+
local_stat.diagonal_statistics,
|
688 |
+
local_stat.diagonal_momentum,
|
689 |
+
local_stat.momentum,
|
690 |
+
TrainingMetrics(per_stat_error),
|
691 |
+
local_stat.index_start,
|
692 |
+
local_stat.sizes,
|
693 |
+
)
|
694 |
+
)
|
695 |
+
return new_local_stats
|
696 |
+
|
697 |
+
|
698 |
def batch(x, num_devices):
|
699 |
"""Batch `x` so that so that leading axis is num_devices."""
|
700 |
n = len(x)
|
|
|
736 |
batch_axis_name=None,
|
737 |
### Only set following 3 params in pjit/spmd mode.
|
738 |
### WARNING: Experimental
|
739 |
+
statistics_partition_spec=None,
|
740 |
+
preconditioner_partition_spec=None,
|
741 |
num_devices_for_pjit=None,
|
742 |
shard_optimizer_states=False,
|
743 |
###
|
|
|
797 |
exponent_override: Override the exponent used in matrix inverse.
|
798 |
batch_axis_name: labeled axis over pmap for data-parallel training the
|
799 |
optimizer used for.
|
800 |
+
statistics_partition_spec: PartitionSpec to be used in sharded mode.
|
801 |
+
preconditioner_partition_spec: PartitionSpec to be used in sharded mode.
|
802 |
num_devices_for_pjit: Number of devices to parallelize over when using pjit.
|
803 |
shard_optimizer_states: Shard optimizer states to save memory in model
|
804 |
parallel training.
|
|
|
898 |
)
|
899 |
|
900 |
def sharded_init_fn(params):
|
901 |
+
"""Returns optimizer state (for PJIT mode).
|
902 |
+
|
903 |
+
Args:
|
904 |
+
params: the parameters that should be updated.
|
905 |
+
"""
|
906 |
params_flat, treedef = jax.tree_flatten(params)
|
907 |
# Find max size to pad to.
|
908 |
max_size = 0
|
|
|
918 |
padded_statistics = []
|
919 |
padded_preconditioners = []
|
920 |
local_stats_flat = []
|
921 |
+
exponents = []
|
922 |
for param in params_flat:
|
923 |
preconditioner = Preconditioner(
|
924 |
param, block_size, best_effort_shape_interpretation
|
|
|
936 |
preconditioners = [jnp.eye(max_size) for s in shapes]
|
937 |
padded_statistics.extend(statistics)
|
938 |
padded_preconditioners.extend(preconditioners)
|
939 |
+
exponent = (
|
940 |
+
preconditioner.exponent_for_preconditioner()
|
941 |
+
if exponent_override == 0
|
942 |
+
else exponent_override
|
943 |
+
)
|
944 |
+
exponents.extend([exponent] * len(shapes))
|
945 |
|
946 |
diagonal_statistics = []
|
947 |
if graft_type != GraftingType.SGD:
|
|
|
951 |
_quantize_diagonal_statistics(diagonal_statistics),
|
952 |
_quantize_momentum(jnp.zeros_like(param)),
|
953 |
_quantize_momentum(jnp.zeros_like(param)),
|
954 |
+
init_training_metrics(len(sizes)),
|
955 |
index_start,
|
956 |
sizes,
|
957 |
)
|
|
|
969 |
padded_preconditioners.extend(
|
970 |
[jnp.eye(max_size, dtype=padded_statistics[0].dtype) for _ in range(to_pad)]
|
971 |
)
|
972 |
+
exponents.extend([1 for _ in range(to_pad)])
|
973 |
global_stats = GlobalShardedParameterStats(
|
974 |
+
jnp.stack(padded_statistics),
|
975 |
+
jnp.stack(padded_preconditioners),
|
976 |
+
jnp.stack(exponents),
|
977 |
)
|
978 |
return ShampooState(
|
979 |
count=jnp.zeros([], jnp.int32),
|
980 |
stats=ShardedShampooStats(global_stats, local_stats),
|
981 |
)
|
982 |
|
983 |
+
def _max_statistics_size_from_params(params):
|
984 |
+
max_size = 0
|
985 |
+
for param in params:
|
986 |
+
param_clone = jnp.zeros(param.shape, dtype=param.dtype)
|
987 |
+
preconditioner = Preconditioner(
|
988 |
+
param_clone, block_size, best_effort_shape_interpretation
|
989 |
+
)
|
990 |
+
if not _skip_preconditioning(param):
|
991 |
+
shapes = preconditioner.shapes_for_preconditioners()
|
992 |
+
sizes = [s[0] for s in shapes]
|
993 |
+
max_size = max(max(sizes), max_size)
|
994 |
+
return max_size
|
995 |
+
|
996 |
+
def _remove_leading_sharding_annotation(pspec):
|
997 |
+
"""Mapping from N-d to (N-1)-d, used for quantization, factoring etc."""
|
998 |
+
# None and PSpec(None) are valid PSpecs.
|
999 |
+
if pspec and len(pspec) > 1:
|
1000 |
+
return pjit.PartitionSpec(*pspec[1:])
|
1001 |
+
else:
|
1002 |
+
return None
|
1003 |
+
|
1004 |
+
def sharded_init_partition_spec_fn(
|
1005 |
+
params, params_partition_spec, partition_spec_for_statistics
|
1006 |
+
):
|
1007 |
+
"""Returns a parallel state tree with PartitionSpec associated with state.
|
1008 |
+
|
1009 |
+
|
1010 |
+
Args:
|
1011 |
+
params: A pytree with params.
|
1012 |
+
params_partition_spec: A pytree with PartitionSpec for params.
|
1013 |
+
partition_spec_for_statistics: PartitionSpec for the statistics.
|
1014 |
+
"""
|
1015 |
+
# Parallel lists of spec, and params.
|
1016 |
+
param_pspec_flat, _ = jax.tree_flatten(
|
1017 |
+
params_partition_spec, is_leaf=lambda x: x is None
|
1018 |
+
)
|
1019 |
+
params_flat, treedef = jax.tree_flatten(params)
|
1020 |
+
assert param_pspec_flat
|
1021 |
+
assert params_flat
|
1022 |
+
# Step is replicated across cores.
|
1023 |
+
# None means cores.
|
1024 |
+
local_stats_flat = []
|
1025 |
+
num_statistics = 0
|
1026 |
+
for param, param_pspec in zip(params_flat, param_pspec_flat):
|
1027 |
+
param_clone = jnp.zeros(param.shape, dtype=param.dtype)
|
1028 |
+
preconditioner = Preconditioner(
|
1029 |
+
param_clone, block_size, best_effort_shape_interpretation
|
1030 |
+
)
|
1031 |
+
shapes = preconditioner.shapes_for_preconditioners()
|
1032 |
+
sizes = []
|
1033 |
+
|
1034 |
+
index_start = num_statistics
|
1035 |
+
if not _skip_preconditioning(param):
|
1036 |
+
sizes = [s[0] for s in shapes]
|
1037 |
+
shapes = preconditioner.shapes_for_preconditioners()
|
1038 |
+
num_statistics += len(shapes)
|
1039 |
+
|
1040 |
+
diagonal_statistics_pspec = []
|
1041 |
+
diagonal_statistics_scale_pspec = []
|
1042 |
+
if graft_type != GraftingType.SGD:
|
1043 |
+
# Identically shaped param.
|
1044 |
+
diagonal_statistics_pspec = param_pspec
|
1045 |
+
if quantized_dtype_for_diagonal_statistics_buffers() != jnp.float32:
|
1046 |
+
diagonal_statistics_scale_pspec = (
|
1047 |
+
_remove_leading_sharding_annotation(param_pspec)
|
1048 |
+
)
|
1049 |
+
|
1050 |
+
m1_pspec = param_pspec
|
1051 |
+
m2_pspec = param_pspec
|
1052 |
+
|
1053 |
+
m1_scale_pspec = []
|
1054 |
+
m2_scale_pspec = []
|
1055 |
+
|
1056 |
+
if quantized_dtype_for_momentum_buffers() != jnp.float32:
|
1057 |
+
m1_scale_pspec = _remove_leading_sharding_annotation(m1_pspec)
|
1058 |
+
m2_scale_pspec = _remove_leading_sharding_annotation(m2_pspec)
|
1059 |
+
|
1060 |
+
local_stats_flat.append(
|
1061 |
+
LocalShardedParameterStats(
|
1062 |
+
QuantizedValue(
|
1063 |
+
diagonal_statistics_pspec,
|
1064 |
+
[],
|
1065 |
+
diagonal_statistics_scale_pspec,
|
1066 |
+
quantized_dtype_for_diagonal_statistics_buffers(),
|
1067 |
+
False,
|
1068 |
+
list(param.shape),
|
1069 |
+
),
|
1070 |
+
QuantizedValue(
|
1071 |
+
m1_pspec,
|
1072 |
+
[],
|
1073 |
+
m1_scale_pspec,
|
1074 |
+
quantized_dtype_for_momentum_buffers(),
|
1075 |
+
False,
|
1076 |
+
list(param.shape),
|
1077 |
+
),
|
1078 |
+
QuantizedValue(
|
1079 |
+
m2_pspec,
|
1080 |
+
[],
|
1081 |
+
m2_scale_pspec,
|
1082 |
+
quantized_dtype_for_momentum_buffers(),
|
1083 |
+
False,
|
1084 |
+
list(param.shape),
|
1085 |
+
),
|
1086 |
+
init_training_metrics_pspec(len(sizes)),
|
1087 |
+
index_start,
|
1088 |
+
sizes,
|
1089 |
+
)
|
1090 |
+
)
|
1091 |
+
|
1092 |
+
local_stats = jax.tree_unflatten(treedef, local_stats_flat)
|
1093 |
+
global_stats = GlobalShardedParameterStats(
|
1094 |
+
partition_spec_for_statistics,
|
1095 |
+
partition_spec_for_statistics,
|
1096 |
+
pjit.PartitionSpec(),
|
1097 |
+
)
|
1098 |
+
count_pspec = pjit.PartitionSpec()
|
1099 |
+
return ShampooState(
|
1100 |
+
count=count_pspec, stats=ShardedShampooStats(global_stats, local_stats)
|
1101 |
+
)
|
1102 |
+
|
1103 |
+
def sharded_init_shape_and_dtype_fn(params):
|
1104 |
+
"""Returns a parallel state tree with shape, dtype associated with state.
|
1105 |
+
|
1106 |
+
|
1107 |
+
Args:
|
1108 |
+
params: A pytree with params.
|
1109 |
+
"""
|
1110 |
+
# Parallel lists of spec, and params.
|
1111 |
+
params_flat, treedef = jax.tree_flatten(params)
|
1112 |
+
assert params_flat
|
1113 |
+
# Step is replicated across cores.
|
1114 |
+
# None means cores.
|
1115 |
+
local_stats_flat = []
|
1116 |
+
num_statistics = 0
|
1117 |
+
for param in params_flat:
|
1118 |
+
param_clone = jnp.zeros(param.shape, dtype=param.dtype)
|
1119 |
+
preconditioner = Preconditioner(
|
1120 |
+
param_clone, block_size, best_effort_shape_interpretation
|
1121 |
+
)
|
1122 |
+
shapes = preconditioner.shapes_for_preconditioners()
|
1123 |
+
sizes = []
|
1124 |
+
|
1125 |
+
index_start = num_statistics
|
1126 |
+
if not _skip_preconditioning(param):
|
1127 |
+
sizes = [s[0] for s in shapes]
|
1128 |
+
shapes = preconditioner.shapes_for_preconditioners()
|
1129 |
+
num_statistics += len(shapes)
|
1130 |
+
|
1131 |
+
diagonal_statistics_shape_and_dtype = []
|
1132 |
+
diagonal_statistics_scale_shape_and_dtype = []
|
1133 |
+
if graft_type != GraftingType.SGD:
|
1134 |
+
diagonal_statistics_shape_and_dtype = [list(param.shape), param.dtype]
|
1135 |
+
qdtype = quantized_dtype_for_diagonal_statistics_buffers()
|
1136 |
+
if qdtype != jnp.float32:
|
1137 |
+
diagonal_statistics_shape_and_dtype = [list(param.shape), qdtype]
|
1138 |
+
diagonal_statistics_scale_shape_and_dtype = [
|
1139 |
+
list(param.shape)[1:],
|
1140 |
+
param.dtype,
|
1141 |
+
]
|
1142 |
+
|
1143 |
+
m1_shape_and_dtype = [list(param.shape), param.dtype]
|
1144 |
+
m2_shape_and_dtype = [list(param.shape), param.dtype]
|
1145 |
+
|
1146 |
+
m1_scale_shape_and_dtype = []
|
1147 |
+
m2_scale_shape_and_dtype = []
|
1148 |
+
|
1149 |
+
qdtype = quantized_dtype_for_momentum_buffers()
|
1150 |
+
if qdtype != jnp.float32:
|
1151 |
+
m1_shape_and_dtype = [list(param.shape), qdtype]
|
1152 |
+
m2_shape_and_dtype = [list(param.shape), qdtype]
|
1153 |
+
|
1154 |
+
m1_scale_shape_and_dtype = [list(param.shape)[1:], qdtype]
|
1155 |
+
m2_scale_shape_and_dtype = [list(param.shape)[1:], qdtype]
|
1156 |
+
|
1157 |
+
local_stats_flat.append(
|
1158 |
+
LocalShardedParameterStats(
|
1159 |
+
QuantizedValue(
|
1160 |
+
diagonal_statistics_shape_and_dtype,
|
1161 |
+
[],
|
1162 |
+
diagonal_statistics_scale_shape_and_dtype,
|
1163 |
+
quantized_dtype_for_diagonal_statistics_buffers(),
|
1164 |
+
False,
|
1165 |
+
list(param.shape),
|
1166 |
+
),
|
1167 |
+
QuantizedValue(
|
1168 |
+
m1_shape_and_dtype,
|
1169 |
+
[],
|
1170 |
+
m1_scale_shape_and_dtype,
|
1171 |
+
quantized_dtype_for_momentum_buffers(),
|
1172 |
+
False,
|
1173 |
+
list(param.shape),
|
1174 |
+
),
|
1175 |
+
QuantizedValue(
|
1176 |
+
m2_shape_and_dtype,
|
1177 |
+
[],
|
1178 |
+
m2_scale_shape_and_dtype,
|
1179 |
+
quantized_dtype_for_momentum_buffers(),
|
1180 |
+
False,
|
1181 |
+
list(param.shape),
|
1182 |
+
),
|
1183 |
+
init_training_metrics_shapes(len(sizes)),
|
1184 |
+
index_start,
|
1185 |
+
sizes,
|
1186 |
+
)
|
1187 |
+
)
|
1188 |
+
|
1189 |
+
local_stats = jax.tree_unflatten(treedef, local_stats_flat)
|
1190 |
+
max_statistics_size = _max_statistics_size_from_params(params_flat)
|
1191 |
+
to_pad = -num_statistics % num_devices_for_pjit
|
1192 |
+
num_statistics += to_pad
|
1193 |
+
statistics_shape = [num_statistics, max_statistics_size, max_statistics_size]
|
1194 |
+
global_stats = GlobalShardedParameterStats(
|
1195 |
+
[statistics_shape, jnp.float32],
|
1196 |
+
[statistics_shape, jnp.float32],
|
1197 |
+
[[num_statistics], jnp.int32],
|
1198 |
+
)
|
1199 |
+
return ShampooState(
|
1200 |
+
count=[[], jnp.float32],
|
1201 |
+
stats=ShardedShampooStats(global_stats, local_stats),
|
1202 |
+
)
|
1203 |
+
|
1204 |
def sharded_update_fn(grads, state, params):
|
1205 |
"""Transform the input gradient and update all statistics in sharded mode.
|
1206 |
|
|
|
1228 |
params_flat,
|
1229 |
)
|
1230 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1231 |
outputs = jax.tree_multimap(
|
1232 |
lambda g, s, p: _transform_grad(g, s, p, state.count),
|
1233 |
grads_flat,
|
|
|
1242 |
_convert_from_parameter_stats(new_stat, local_stat)
|
1243 |
for new_stat, local_stat in zip(new_stats_flat, local_stats_flat)
|
1244 |
]
|
|
|
1245 |
|
1246 |
max_size = global_stats.statistics.shape[1]
|
1247 |
new_padded_statistics = []
|
|
|
1264 |
for _ in range(to_pad)
|
1265 |
]
|
1266 |
)
|
|
|
1267 |
new_stacked_padded_statistics = jnp.stack(new_padded_statistics)
|
1268 |
+
new_stacked_padded_statistics = pjit.with_sharding_constraint(
|
1269 |
+
new_stacked_padded_statistics, statistics_partition_spec
|
1270 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1271 |
|
1272 |
def _internal_inverse_pth_root_all():
|
1273 |
+
preconditioners, errors = _matrix_inverse_pth_root_pjit(
|
1274 |
+
new_stacked_padded_statistics,
|
1275 |
+
global_stats.exponents,
|
1276 |
+
statistics_partition_spec,
|
1277 |
)
|
1278 |
return preconditioners, errors
|
1279 |
|
|
|
1284 |
# shaped tensors. Note statistics will be ignored as we are passing in
|
1285 |
# a large init value for error.
|
1286 |
preconditioners_init = new_stacked_padded_statistics
|
1287 |
+
n = new_stacked_padded_statistics.shape[0]
|
1288 |
+
errors_init = jnp.ones([n], jnp.float32) * inverse_failure_threshold
|
1289 |
init_state = [preconditioners_init, errors_init]
|
1290 |
perform_step = state.count % preconditioning_compute_steps == 0
|
1291 |
new_preconditioners, errors = efficient_cond(
|
1292 |
perform_step, _internal_inverse_pth_root_all, init_state
|
1293 |
)
|
1294 |
|
1295 |
+
new_local_stats_flat = _add_error_into_local_stats(
|
1296 |
+
new_local_stats_flat, errors, inverse_failure_threshold
|
1297 |
+
)
|
1298 |
+
new_local_stats = jax.tree_unflatten(treedef, new_local_stats_flat)
|
1299 |
errors = errors.reshape((-1, 1, 1))
|
1300 |
predicate = jnp.logical_or(
|
1301 |
jnp.isnan(errors), errors >= inverse_failure_threshold
|
|
|
1306 |
+ (1.0 - predicate) * new_preconditioners
|
1307 |
)
|
1308 |
new_global_stats = GlobalShardedParameterStats(
|
1309 |
+
new_stacked_padded_statistics,
|
1310 |
+
new_conditional_preconditioners,
|
1311 |
+
global_stats.exponents,
|
1312 |
)
|
1313 |
new_shampoo_state = ShampooState(
|
1314 |
count=state.count + 1,
|
|
|
1339 |
_maybe_quantize_preconditioners(preconditioners),
|
1340 |
_quantize_momentum(jnp.zeros_like(param)),
|
1341 |
_quantize_momentum(jnp.zeros_like(param)),
|
1342 |
+
init_training_metrics(len(statistics)),
|
1343 |
)
|
1344 |
|
1345 |
return ShampooState(
|
|
|
1384 |
state.preconditioners,
|
1385 |
state.diagonal_momentum,
|
1386 |
state.momentum,
|
1387 |
+
state.training_metrics,
|
1388 |
)
|
1389 |
|
1390 |
def _matrix_inverse_pth_root_vmap(xs, ps):
|
|
|
1408 |
|
1409 |
return jax.vmap(matrix_inverse_pth_root_wrapper)(qxs, qds, qbs, ps)
|
1410 |
|
1411 |
+
def _matrix_inverse_pth_root_pjit(xs, ps, statistics_partition_spec=None):
|
|
|
1412 |
# Partition the concatenated statistics matrix across all cores.
|
1413 |
+
pspec_for_partition = preconditioner_partition_spec
|
1414 |
+
partitioned_xs = pjit.with_sharding_constraint(xs, pspec_for_partition)
|
1415 |
+
partitioned_ps = pjit.with_sharding_constraint(
|
1416 |
+
ps, pjit.PartitionSpec(preconditioner_partition_spec[0])
|
1417 |
+
)
|
|
|
|
|
1418 |
# Run matrix inverse pth root on each shard.
|
1419 |
partitioned_preconditioners, partitioned_errors = _matrix_inverse_pth_root_vmap(
|
1420 |
partitioned_xs, partitioned_ps
|
1421 |
)
|
1422 |
+
# Reshard output to have the same PSpec as input. This is required to avoid
|
1423 |
+
# vmap seeing the full set of statistics.
|
1424 |
+
partitioned_preconditioners = pjit.with_sharding_constraint(
|
1425 |
+
partitioned_preconditioners, pspec_for_partition
|
1426 |
+
)
|
1427 |
# Recombine the outputs at each core.
|
1428 |
+
preconditioners = pjit.with_sharding_constraint(
|
1429 |
+
partitioned_preconditioners, statistics_partition_spec
|
1430 |
+
)
|
1431 |
+
errors = pjit.with_sharding_constraint(partitioned_errors, pjit.PartitionSpec())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1432 |
return preconditioners, errors
|
1433 |
|
1434 |
def _pmap_compute_preconditioners(
|
|
|
1510 |
)
|
1511 |
|
1512 |
new_preconditioners_flat = []
|
1513 |
+
new_errors_flat = []
|
1514 |
for p, shape, prev_p, error in zip(
|
1515 |
preconditioners_flat, original_shapes, prev_preconditioners, errors_flat
|
1516 |
):
|
1517 |
new_preconditioners_flat.append(
|
1518 |
_select_preconditioner(error, p[: shape[0], : shape[1]], prev_p)
|
1519 |
)
|
1520 |
+
new_errors_flat.append(error)
|
1521 |
|
1522 |
assert len(states) == len(num_statistics_per_state)
|
1523 |
assert len(new_preconditioners_flat) == num_statistics
|
1524 |
+
assert len(new_errors_flat) == num_statistics
|
1525 |
|
1526 |
# Add back empty preconditioners so we that we can set the optimizer state.
|
1527 |
preconditioners_for_states = []
|
1528 |
idx = 0
|
1529 |
+
errors_for_states = []
|
1530 |
for num_statistics, state in zip(num_statistics_per_state, states):
|
1531 |
if num_statistics == 0:
|
1532 |
preconditioners_for_states.append([])
|
1533 |
+
errors_for_states.append([])
|
1534 |
else:
|
1535 |
preconditioners_for_state = new_preconditioners_flat[
|
1536 |
idx : idx + num_statistics
|
1537 |
]
|
1538 |
assert len(state.statistics) == len(preconditioners_for_state)
|
1539 |
preconditioners_for_states.append(preconditioners_for_state)
|
1540 |
+
|
1541 |
+
errors_for_state = jnp.stack(
|
1542 |
+
new_errors_flat[idx : idx + num_statistics]
|
1543 |
+
)
|
1544 |
+
assert len(state.statistics) == len(errors_for_state)
|
1545 |
+
errors_for_states.append(errors_for_state)
|
1546 |
+
|
1547 |
idx += num_statistics
|
1548 |
new_states = []
|
1549 |
+
for state, new_preconditioners, new_errors in zip(
|
1550 |
+
states, preconditioners_for_states, errors_for_states
|
1551 |
+
):
|
1552 |
+
if state.statistics:
|
1553 |
+
new_errors = jnp.where(
|
1554 |
+
jnp.logical_and(
|
1555 |
+
new_errors > 0.0, new_errors != inverse_failure_threshold
|
1556 |
+
),
|
1557 |
+
new_errors,
|
1558 |
+
state.training_metrics.inverse_pth_root_errors,
|
1559 |
+
)
|
1560 |
+
new_training_metrics = TrainingMetrics(new_errors)
|
1561 |
new_states.append(
|
1562 |
ParameterStats(
|
1563 |
state.diagonal_statistics,
|
|
|
1565 |
new_preconditioners,
|
1566 |
state.diagonal_momentum,
|
1567 |
state.momentum,
|
1568 |
+
new_training_metrics,
|
1569 |
)
|
1570 |
)
|
1571 |
|
|
|
1724 |
new_quantized_preconditioners_flat = []
|
1725 |
new_quantized_diagonals_flat = []
|
1726 |
new_quantized_bucket_sizes_flat = []
|
1727 |
+
new_errors_flat = []
|
1728 |
for p, d, b, shape, prev_p, error in zip(
|
1729 |
quantized_preconditioners_flat,
|
1730 |
quantized_diagonals_flat,
|
|
|
1744 |
new_quantized_bucket_sizes_flat.append(
|
1745 |
_select_preconditioner(error, b[: shape[0]], prev_p.bucket_size)
|
1746 |
)
|
1747 |
+
new_errors_flat.append(error)
|
1748 |
|
1749 |
assert len(states) == len(num_statistics_per_state)
|
1750 |
assert len(new_quantized_preconditioners_flat) == num_statistics
|
|
|
1753 |
|
1754 |
# Add back empty preconditioners so we that we can set the optimizer state.
|
1755 |
preconditioners_for_states = []
|
1756 |
+
errors_for_states = []
|
1757 |
idx = 0
|
1758 |
for num_statistics, state in zip(num_statistics_per_state, states):
|
1759 |
if num_statistics == 0:
|
1760 |
preconditioners_for_states.append([])
|
1761 |
+
errors_for_states.append([])
|
1762 |
else:
|
1763 |
quantized_preconditioners_for_state = (
|
1764 |
new_quantized_preconditioners_flat[idx : idx + num_statistics]
|
|
|
1769 |
quantized_bucket_sizes_for_state = new_quantized_bucket_sizes_flat[
|
1770 |
idx : idx + num_statistics
|
1771 |
]
|
1772 |
+
errors_for_state = jnp.stack(
|
1773 |
+
new_errors_flat[idx : idx + num_statistics]
|
1774 |
+
)
|
1775 |
|
1776 |
assert len(state.statistics) == len(quantized_preconditioners_for_state)
|
1777 |
assert len(state.statistics) == len(quantized_diagonals_for_state)
|
1778 |
assert len(state.statistics) == len(quantized_bucket_sizes_for_state)
|
1779 |
+
assert len(state.statistics) == len(errors_for_state)
|
1780 |
|
1781 |
quantized_preconditioners = []
|
1782 |
for qv, qd, qb in zip(
|
|
|
1788 |
QuantizedValue(qv, qd, qb, qv.dtype, True, list(qv.shape))
|
1789 |
)
|
1790 |
preconditioners_for_states.append(quantized_preconditioners)
|
1791 |
+
errors_for_states.append(errors_for_state)
|
1792 |
idx += num_statistics
|
1793 |
new_states = []
|
1794 |
+
for state, new_preconditioners, new_errors in zip(
|
1795 |
+
states, preconditioners_for_states, errors_for_states
|
1796 |
+
):
|
1797 |
+
if state.statistics:
|
1798 |
+
new_errors = jnp.where(
|
1799 |
+
jnp.logical_and(
|
1800 |
+
new_errors > 0.0, new_errors != inverse_failure_threshold
|
1801 |
+
),
|
1802 |
+
new_errors,
|
1803 |
+
state.training_metrics.inverse_pth_root_errors,
|
1804 |
+
)
|
1805 |
+
new_training_metrics = TrainingMetrics(new_errors)
|
1806 |
new_states.append(
|
1807 |
ParameterStats(
|
1808 |
state.diagonal_statistics,
|
|
|
1810 |
new_preconditioners,
|
1811 |
state.diagonal_momentum,
|
1812 |
state.momentum,
|
1813 |
+
new_training_metrics,
|
1814 |
)
|
1815 |
)
|
1816 |
|
|
|
1892 |
)
|
1893 |
|
1894 |
new_preconditioners_flat = []
|
1895 |
+
new_errors_flat = []
|
1896 |
for p, shape, prev_p, error in zip(
|
1897 |
preconditioners_flat, original_shapes, prev_preconditioners, errors_flat
|
1898 |
):
|
1899 |
new_preconditioners_flat.append(
|
1900 |
_select_preconditioner(error, p[: shape[0], : shape[1]], prev_p)
|
1901 |
)
|
1902 |
+
new_errors_flat.append(error)
|
1903 |
|
1904 |
assert len(states) == len(num_statistics_per_state)
|
1905 |
assert len(new_preconditioners_flat) == num_statistics
|
1906 |
|
1907 |
# Add back empty preconditioners so we that we can set the optimizer state.
|
1908 |
preconditioners_for_states = []
|
1909 |
+
errors_for_states = []
|
1910 |
idx = 0
|
1911 |
for num_statistics, state in zip(num_statistics_per_state, states):
|
1912 |
if num_statistics == 0:
|
1913 |
preconditioners_for_states.append([])
|
1914 |
+
errors_for_states.append([])
|
1915 |
else:
|
1916 |
preconditioners_for_state = new_preconditioners_flat[
|
1917 |
idx : idx + num_statistics
|
1918 |
]
|
1919 |
assert len(state.statistics) == len(preconditioners_for_state)
|
1920 |
preconditioners_for_states.append(preconditioners_for_state)
|
1921 |
+
|
1922 |
+
errors_for_state = jnp.stack(
|
1923 |
+
new_errors_flat[idx : idx + num_statistics]
|
1924 |
+
)
|
1925 |
+
assert len(state.statistics) == len(errors_for_state)
|
1926 |
+
errors_for_states.append(errors_for_state)
|
1927 |
idx += num_statistics
|
1928 |
+
|
1929 |
new_states = []
|
1930 |
+
for state, new_preconditioners, new_errors in zip(
|
1931 |
+
states, preconditioners_for_states, errors_for_states
|
1932 |
+
):
|
1933 |
+
if state.statistics:
|
1934 |
+
new_errors = jnp.where(
|
1935 |
+
jnp.logical_and(
|
1936 |
+
new_errors > 0.0, new_errors != inverse_failure_threshold
|
1937 |
+
),
|
1938 |
+
new_errors,
|
1939 |
+
state.training_metrics.inverse_pth_root_errors,
|
1940 |
+
)
|
1941 |
+
new_training_metrics = TrainingMetrics(new_errors)
|
1942 |
new_states.append(
|
1943 |
ParameterStats(
|
1944 |
state.diagonal_statistics,
|
|
|
1946 |
new_preconditioners,
|
1947 |
state.diagonal_momentum,
|
1948 |
state.momentum,
|
1949 |
+
new_training_metrics,
|
1950 |
)
|
1951 |
)
|
1952 |
|
|
|
2133 |
state.preconditioners,
|
2134 |
_quantize_momentum(grafting_update_with_wd_momentum),
|
2135 |
_quantize_momentum(shampoo_update_with_wd_momentum),
|
2136 |
+
state.training_metrics,
|
2137 |
)
|
2138 |
+
|
2139 |
return transformed_update, param_stats
|
2140 |
|
2141 |
def update_fn(grads, state, params):
|
|
|
2178 |
return updates, new_state
|
2179 |
|
2180 |
if shard_optimizer_states:
|
2181 |
+
# Hijacks the init_fn signature so we can return an OptState with
|
2182 |
+
# appropriate init_fns.
|
2183 |
+
def _init_fns(unused_params):
|
2184 |
+
return InitFnState(
|
2185 |
+
init_fn=sharded_init_fn,
|
2186 |
+
pspec_fn=sharded_init_partition_spec_fn,
|
2187 |
+
shape_and_dtype_fn=sharded_init_shape_and_dtype_fn,
|
2188 |
+
)
|
2189 |
+
|
2190 |
+
return optax.GradientTransformation(_init_fns, sharded_update_fn)
|
2191 |
else:
|
2192 |
return optax.GradientTransformation(init_fn, update_fn)
|