Spaces:
Running
Running
Merge pull request #63 from borisdayma/chore-mv
Browse files- README.md +9 -7
- dev/{notebooks/encoding → encoding}/vqgan-jax-encoding-with-captions.ipynb +0 -0
- dev/{notebooks/encoding → encoding}/vqgan-jax-encoding-yfcc100m.ipynb +0 -0
- dev/{notebooks/encoding → encoding}/vqgan-jax-encoding.ipynb +0 -0
- dev/{predictions → inference}/README.md +0 -0
- dev/{predictions → inference}/dalle_mini +0 -0
- DALL·E_mini_Inference_pipeline.ipynb → dev/inference/inference_pipeline.ipynb +0 -0
- dev/inference/wandb-examples-from-backend.py +76 -0
- dev/{predictions → inference}/wandb-examples.py +15 -56
- dev/notebooks/README.md +0 -5
- dev/notebooks/demo/CustomBARTv4b_model-generate.ipynb +0 -394
- dev/notebooks/demo/demo_notebook.ipynb +0 -387
- dev/notebooks/demo/model-sweep.py +0 -216
- dev/notebooks/demo/tpu-demo.ipynb +0 -446
- dev/notebooks/model/data-pipeline.ipynb +0 -385
- dev/predictions/wandb-examples-from-backend.py +0 -52
- dev/{notebooks/vqgan → vqgan}/JAX_VQGAN_f16_16384_Reconstruction.ipynb +0 -0
README.md
CHANGED
@@ -22,10 +22,6 @@ You can create your own pictures with [the demo](https://huggingface.co/spaces/f
|
|
22 |
|
23 |
Refer to [our report](https://wandb.ai/dalle-mini/dalle-mini/reports/DALL-E-mini--Vmlldzo4NjIxODA).
|
24 |
|
25 |
-
## Where does the logo come from?
|
26 |
-
|
27 |
-
The "armchair in the shape of an avocado" was used by OpenAI when releasing DALL·E to illustrate the model's capabilities. Having successful predictions on this prompt represents a big milestone to us.
|
28 |
-
|
29 |
## Development
|
30 |
|
31 |
This section is for the adventurous people wanting to look into the code.
|
@@ -58,13 +54,19 @@ Use [patil-suraj/vqgan-jax](https://github.com/patil-suraj/vqgan-jax).
|
|
58 |
|
59 |
### Training of Seq2Seq
|
60 |
|
61 |
-
Refer to `dev/seq2seq` folder.
|
62 |
|
63 |
You can also adjust the [sweep configuration file](https://docs.wandb.ai/guides/sweeps) if you need to perform a hyperparameter search.
|
64 |
|
65 |
-
### Inference
|
|
|
|
|
66 |
|
67 |
-
|
|
|
|
|
|
|
|
|
68 |
|
69 |
## Authors
|
70 |
|
|
|
22 |
|
23 |
Refer to [our report](https://wandb.ai/dalle-mini/dalle-mini/reports/DALL-E-mini--Vmlldzo4NjIxODA).
|
24 |
|
|
|
|
|
|
|
|
|
25 |
## Development
|
26 |
|
27 |
This section is for the adventurous people wanting to look into the code.
|
|
|
54 |
|
55 |
### Training of Seq2Seq
|
56 |
|
57 |
+
Refer to [`dev/seq2seq`](dev/seq2seq) folder.
|
58 |
|
59 |
You can also adjust the [sweep configuration file](https://docs.wandb.ai/guides/sweeps) if you need to perform a hyperparameter search.
|
60 |
|
61 |
+
### Inference Pipeline
|
62 |
+
|
63 |
+
To generate sample predictions and understand the inference pipeline step by step, refer to [`dev/inference/inference_pipeline.ipynb`](dev/inference/inference_pipeline.ipynb).
|
64 |
|
65 |
+
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/borisdayma/dalle-mini/blob/main/dev/inference/inference_pipeline.ipynb)
|
66 |
+
|
67 |
+
## Where does the logo come from?
|
68 |
+
|
69 |
+
The "armchair in the shape of an avocado" was used by OpenAI when releasing DALL·E to illustrate the model's capabilities. Having successful predictions on this prompt represents a big milestone to us.
|
70 |
|
71 |
## Authors
|
72 |
|
dev/{notebooks/encoding → encoding}/vqgan-jax-encoding-with-captions.ipynb
RENAMED
File without changes
|
dev/{notebooks/encoding → encoding}/vqgan-jax-encoding-yfcc100m.ipynb
RENAMED
File without changes
|
dev/{notebooks/encoding → encoding}/vqgan-jax-encoding.ipynb
RENAMED
File without changes
|
dev/{predictions → inference}/README.md
RENAMED
File without changes
|
dev/{predictions → inference}/dalle_mini
RENAMED
File without changes
|
DALL·E_mini_Inference_pipeline.ipynb → dev/inference/inference_pipeline.ipynb
RENAMED
File without changes
|
dev/inference/wandb-examples-from-backend.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding: utf-8
|
3 |
+
|
4 |
+
from PIL import Image, ImageDraw, ImageFont
|
5 |
+
import wandb
|
6 |
+
import os
|
7 |
+
|
8 |
+
from dalle_mini.backend import ServiceError, get_images_from_backend
|
9 |
+
from dalle_mini.helpers import captioned_strip
|
10 |
+
|
11 |
+
os.environ["WANDB_SILENT"] = "true"
|
12 |
+
os.environ["WANDB_CONSOLE"] = "off"
|
13 |
+
|
14 |
+
def log_to_wandb(prompts):
|
15 |
+
try:
|
16 |
+
backend_url = os.environ["BACKEND_SERVER"]
|
17 |
+
for _ in range(1):
|
18 |
+
for prompt in prompts:
|
19 |
+
print(f"Getting selections for: {prompt}")
|
20 |
+
# make a separate run per prompt
|
21 |
+
with wandb.init(
|
22 |
+
entity='wandb',
|
23 |
+
project='hf-flax-dalle-mini',
|
24 |
+
job_type='predictions',# tags=['openai'],
|
25 |
+
config={'prompt': prompt}
|
26 |
+
):
|
27 |
+
imgs = []
|
28 |
+
selected = get_images_from_backend(prompt, backend_url)
|
29 |
+
strip = captioned_strip(selected, prompt)
|
30 |
+
imgs.append(wandb.Image(strip))
|
31 |
+
wandb.log({"images": imgs})
|
32 |
+
except ServiceError as error:
|
33 |
+
print(f"Service unavailable, status: {error.status_code}")
|
34 |
+
except KeyError:
|
35 |
+
print("Error: BACKEND_SERVER unset")
|
36 |
+
|
37 |
+
prompts = [
|
38 |
+
# "white snow covered mountain under blue sky during daytime",
|
39 |
+
# "aerial view of beach during daytime",
|
40 |
+
# "aerial view of beach at night",
|
41 |
+
# "a farmhouse surrounded by beautiful flowers",
|
42 |
+
# "an armchair in the shape of an avocado",
|
43 |
+
# "young woman riding her bike trough a forest",
|
44 |
+
# "a unicorn is passing by a rainbow in a field of flowers",
|
45 |
+
# "illustration of a baby shark swimming around corals",
|
46 |
+
# "painting of an oniric forest glade surrounded by tall trees",
|
47 |
+
# "sunset over green mountains",
|
48 |
+
# "a forest glade surrounded by tall trees in a sunny Spring morning",
|
49 |
+
# "fishing village under the moonlight in a serene sunset",
|
50 |
+
# "cartoon of a carrot with big eyes",
|
51 |
+
# "still life in the style of Kandinsky",
|
52 |
+
# "still life in the style of Picasso",
|
53 |
+
# "a graphite sketch of a gothic cathedral",
|
54 |
+
# "a graphite sketch of Elon Musk",
|
55 |
+
# "a watercolor pond with green leaves and yellow flowers",
|
56 |
+
# "a logo of a cute avocado armchair singing karaoke on stage in front of a crowd of strawberry shaped lamps",
|
57 |
+
# "happy celebration in a small village in Africa",
|
58 |
+
# "a logo of an armchair in the shape of an avocado"
|
59 |
+
# "Pele and Maradona in a hypothetical match",
|
60 |
+
# "Mohammed Ali and Mike Tyson in a hypothetical match",
|
61 |
+
# "a storefront that has the word 'openai' written on it",
|
62 |
+
# "a pentagonal green clock",
|
63 |
+
# "a collection of glasses is sitting on a table",
|
64 |
+
# "a small red block sitting on a large green block",
|
65 |
+
# "an extreme close-up view of a capybara sitting in a field",
|
66 |
+
# "a cross-section view of a walnut",
|
67 |
+
# "a professional high-quality emoji of a lovestruck cup of boba",
|
68 |
+
# "a photo of san francisco's golden gate bridge",
|
69 |
+
# "an illustration of a baby daikon radish in a tutu walking a dog",
|
70 |
+
# "a picture of the Eiffel tower on the Moon",
|
71 |
+
# "a colorful stairway to heaven",
|
72 |
+
"this is a detailed high-resolution scan of a human brain"
|
73 |
+
]
|
74 |
+
|
75 |
+
for _ in range(1):
|
76 |
+
log_to_wandb(prompts)
|
dev/{predictions → inference}/wandb-examples.py
RENAMED
@@ -4,16 +4,14 @@
|
|
4 |
import random
|
5 |
|
6 |
import jax
|
7 |
-
import flax.linen as nn
|
8 |
from flax.training.common_utils import shard
|
9 |
from flax.jax_utils import replicate, unreplicate
|
10 |
|
11 |
from transformers.models.bart.modeling_flax_bart import *
|
12 |
from transformers import BartTokenizer, FlaxBartForConditionalGeneration
|
13 |
|
14 |
-
import
|
15 |
|
16 |
-
import requests
|
17 |
from PIL import Image
|
18 |
import numpy as np
|
19 |
import matplotlib.pyplot as plt
|
@@ -23,58 +21,24 @@ import torchvision.transforms as T
|
|
23 |
import torchvision.transforms.functional as TF
|
24 |
from torchvision.transforms import InterpolationMode
|
25 |
|
|
|
26 |
from vqgan_jax.modeling_flax_vqgan import VQModel
|
27 |
|
28 |
-
#
|
29 |
-
|
30 |
-
OUTPUT_LENGTH = 256 + 1 # number of encoded tokens + 1 for bos
|
31 |
-
BOS_TOKEN_ID = 16384
|
32 |
-
BASE_MODEL = 'facebook/bart-large-cnn'
|
33 |
-
|
34 |
-
class CustomFlaxBartModule(FlaxBartModule):
|
35 |
-
def setup(self):
|
36 |
-
# we keep shared to easily load pre-trained weights
|
37 |
-
self.shared = nn.Embed(
|
38 |
-
self.config.vocab_size,
|
39 |
-
self.config.d_model,
|
40 |
-
embedding_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),
|
41 |
-
dtype=self.dtype,
|
42 |
-
)
|
43 |
-
# a separate embedding is used for the decoder
|
44 |
-
self.decoder_embed = nn.Embed(
|
45 |
-
OUTPUT_VOCAB_SIZE,
|
46 |
-
self.config.d_model,
|
47 |
-
embedding_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),
|
48 |
-
dtype=self.dtype,
|
49 |
-
)
|
50 |
-
self.encoder = FlaxBartEncoder(self.config, dtype=self.dtype, embed_tokens=self.shared)
|
51 |
-
|
52 |
-
# the decoder has a different config
|
53 |
-
decoder_config = BartConfig(self.config.to_dict())
|
54 |
-
decoder_config.max_position_embeddings = OUTPUT_LENGTH
|
55 |
-
decoder_config.vocab_size = OUTPUT_VOCAB_SIZE
|
56 |
-
self.decoder = FlaxBartDecoder(decoder_config, dtype=self.dtype, embed_tokens=self.decoder_embed)
|
57 |
-
|
58 |
-
class CustomFlaxBartForConditionalGenerationModule(FlaxBartForConditionalGenerationModule):
|
59 |
-
def setup(self):
|
60 |
-
self.model = CustomFlaxBartModule(config=self.config, dtype=self.dtype)
|
61 |
-
self.lm_head = nn.Dense(
|
62 |
-
OUTPUT_VOCAB_SIZE,
|
63 |
-
use_bias=False,
|
64 |
-
dtype=self.dtype,
|
65 |
-
kernel_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),
|
66 |
-
)
|
67 |
-
self.final_logits_bias = self.param("final_logits_bias", self.bias_init, (1, OUTPUT_VOCAB_SIZE))
|
68 |
-
|
69 |
-
class CustomFlaxBartForConditionalGeneration(FlaxBartForConditionalGeneration):
|
70 |
-
module_class = CustomFlaxBartForConditionalGenerationModule
|
71 |
-
|
72 |
|
73 |
import wandb
|
74 |
import os
|
|
|
|
|
|
|
|
|
75 |
os.environ["WANDB_SILENT"] = "true"
|
76 |
os.environ["WANDB_CONSOLE"] = "off"
|
77 |
|
|
|
|
|
|
|
78 |
# set id to None so our latest images don't get overwritten
|
79 |
id = None
|
80 |
run = wandb.init(id=id,
|
@@ -87,8 +51,10 @@ artifact = run.use_artifact('wandb/hf-flax-dalle-mini/model-4oh3u7ca:latest', ty
|
|
87 |
artifact_dir = artifact.download()
|
88 |
|
89 |
# create our model
|
90 |
-
tokenizer = BartTokenizer.from_pretrained(BASE_MODEL)
|
91 |
model = CustomFlaxBartForConditionalGeneration.from_pretrained(artifact_dir)
|
|
|
|
|
|
|
92 |
model.config.force_bos_token_to_be_generated = False
|
93 |
model.config.forced_bos_token_id = None
|
94 |
model.config.forced_eos_token_id = None
|
@@ -143,9 +109,6 @@ p_get_images = jax.pmap(get_images, "batch")
|
|
143 |
bart_params = replicate(model.params)
|
144 |
vqgan_params = replicate(vqgan.params)
|
145 |
|
146 |
-
# ## CLIP Scoring
|
147 |
-
from transformers import CLIPProcessor, FlaxCLIPModel
|
148 |
-
|
149 |
clip = FlaxCLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
150 |
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
151 |
|
@@ -170,16 +133,12 @@ def hallucinate(prompt, num_images=64):
|
|
170 |
|
171 |
def clip_top_k(prompt, images, k=8):
|
172 |
inputs = processor(text=prompt, images=images, return_tensors="np", padding=True)
|
|
|
173 |
outputs = clip(**inputs)
|
174 |
logits = outputs.logits_per_text
|
175 |
scores = np.array(logits[0]).argsort()[-k:][::-1]
|
176 |
return [images[score] for score in scores]
|
177 |
|
178 |
-
|
179 |
-
# ## Log to wandb
|
180 |
-
|
181 |
-
from dalle_mini.helpers import captioned_strip
|
182 |
-
|
183 |
def log_to_wandb(prompts):
|
184 |
strips = []
|
185 |
for prompt in prompts:
|
|
|
4 |
import random
|
5 |
|
6 |
import jax
|
|
|
7 |
from flax.training.common_utils import shard
|
8 |
from flax.jax_utils import replicate, unreplicate
|
9 |
|
10 |
from transformers.models.bart.modeling_flax_bart import *
|
11 |
from transformers import BartTokenizer, FlaxBartForConditionalGeneration
|
12 |
|
13 |
+
import os
|
14 |
|
|
|
15 |
from PIL import Image
|
16 |
import numpy as np
|
17 |
import matplotlib.pyplot as plt
|
|
|
21 |
import torchvision.transforms.functional as TF
|
22 |
from torchvision.transforms import InterpolationMode
|
23 |
|
24 |
+
from dalle_mini.model import CustomFlaxBartForConditionalGeneration
|
25 |
from vqgan_jax.modeling_flax_vqgan import VQModel
|
26 |
|
27 |
+
# ## CLIP Scoring
|
28 |
+
from transformers import CLIPProcessor, FlaxCLIPModel
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
import wandb
|
31 |
import os
|
32 |
+
|
33 |
+
from dalle_mini.helpers import captioned_strip
|
34 |
+
|
35 |
+
|
36 |
os.environ["WANDB_SILENT"] = "true"
|
37 |
os.environ["WANDB_CONSOLE"] = "off"
|
38 |
|
39 |
+
# TODO: used for legacy support
|
40 |
+
BASE_MODEL = 'facebook/bart-large-cnn'
|
41 |
+
|
42 |
# set id to None so our latest images don't get overwritten
|
43 |
id = None
|
44 |
run = wandb.init(id=id,
|
|
|
51 |
artifact_dir = artifact.download()
|
52 |
|
53 |
# create our model
|
|
|
54 |
model = CustomFlaxBartForConditionalGeneration.from_pretrained(artifact_dir)
|
55 |
+
|
56 |
+
# TODO: legacy support (earlier models)
|
57 |
+
tokenizer = BartTokenizer.from_pretrained(BASE_MODEL)
|
58 |
model.config.force_bos_token_to_be_generated = False
|
59 |
model.config.forced_bos_token_id = None
|
60 |
model.config.forced_eos_token_id = None
|
|
|
109 |
bart_params = replicate(model.params)
|
110 |
vqgan_params = replicate(vqgan.params)
|
111 |
|
|
|
|
|
|
|
112 |
clip = FlaxCLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
113 |
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
114 |
|
|
|
133 |
|
134 |
def clip_top_k(prompt, images, k=8):
|
135 |
inputs = processor(text=prompt, images=images, return_tensors="np", padding=True)
|
136 |
+
# FIXME: image should be resized and normalized prior to being processed by CLIP
|
137 |
outputs = clip(**inputs)
|
138 |
logits = outputs.logits_per_text
|
139 |
scores = np.array(logits[0]).argsort()[-k:][::-1]
|
140 |
return [images[score] for score in scores]
|
141 |
|
|
|
|
|
|
|
|
|
|
|
142 |
def log_to_wandb(prompts):
|
143 |
strips = []
|
144 |
for prompt in prompts:
|
dev/notebooks/README.md
DELETED
@@ -1,5 +0,0 @@
|
|
1 |
-
# Notebooks
|
2 |
-
|
3 |
-
These notebooks were used during development.
|
4 |
-
|
5 |
-
TODO: This section requires some refactor and clean up.
|
|
|
|
|
|
|
|
|
|
|
|
dev/notebooks/demo/CustomBARTv4b_model-generate.ipynb
DELETED
@@ -1,394 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"cells": [
|
3 |
-
{
|
4 |
-
"cell_type": "markdown",
|
5 |
-
"metadata": {
|
6 |
-
"id": "ewer-Q-0w2xA"
|
7 |
-
},
|
8 |
-
"source": [
|
9 |
-
"# Installation"
|
10 |
-
]
|
11 |
-
},
|
12 |
-
{
|
13 |
-
"cell_type": "code",
|
14 |
-
"execution_count": null,
|
15 |
-
"metadata": {
|
16 |
-
"colab": {
|
17 |
-
"base_uri": "https://localhost:8080/"
|
18 |
-
},
|
19 |
-
"id": "NpsF9ipLLl2s",
|
20 |
-
"outputId": "10bf54aa-b89d-4e42-9777-bc97b00a5f32"
|
21 |
-
},
|
22 |
-
"outputs": [],
|
23 |
-
"source": [
|
24 |
-
"!pip install git+https://github.com/huggingface/transformers/\n",
|
25 |
-
"!pip install git+https://github.com/google/flax"
|
26 |
-
]
|
27 |
-
},
|
28 |
-
{
|
29 |
-
"cell_type": "code",
|
30 |
-
"execution_count": null,
|
31 |
-
"metadata": {
|
32 |
-
"id": "M1wVkrpjU6zO"
|
33 |
-
},
|
34 |
-
"outputs": [],
|
35 |
-
"source": [
|
36 |
-
"%load_ext autoreload\n",
|
37 |
-
"%autoreload 2"
|
38 |
-
]
|
39 |
-
},
|
40 |
-
{
|
41 |
-
"cell_type": "markdown",
|
42 |
-
"metadata": {
|
43 |
-
"id": "t47CH1H_IOT8"
|
44 |
-
},
|
45 |
-
"source": [
|
46 |
-
"# Custom BART Model"
|
47 |
-
]
|
48 |
-
},
|
49 |
-
{
|
50 |
-
"cell_type": "code",
|
51 |
-
"execution_count": null,
|
52 |
-
"metadata": {
|
53 |
-
"id": "9jQnM6S2vCpn"
|
54 |
-
},
|
55 |
-
"outputs": [],
|
56 |
-
"source": [
|
57 |
-
"# TODO: set those args in a config file\n",
|
58 |
-
"OUTPUT_VOCAB_SIZE = 16384 + 1 # encoded image token space + 1 for bos\n",
|
59 |
-
"OUTPUT_LENGTH = 256 + 1 # number of encoded tokens + 1 for bos\n",
|
60 |
-
"BOS_TOKEN_ID = 16384\n",
|
61 |
-
"BASE_MODEL = 'facebook/bart-large'"
|
62 |
-
]
|
63 |
-
},
|
64 |
-
{
|
65 |
-
"cell_type": "code",
|
66 |
-
"execution_count": null,
|
67 |
-
"metadata": {
|
68 |
-
"id": "_eEaJVxAKpV5"
|
69 |
-
},
|
70 |
-
"outputs": [],
|
71 |
-
"source": [
|
72 |
-
"import jax\n",
|
73 |
-
"import flax.linen as nn\n",
|
74 |
-
"\n",
|
75 |
-
"from transformers.models.bart.modeling_flax_bart import *\n",
|
76 |
-
"from transformers import BartTokenizer, FlaxBartForConditionalGeneration\n",
|
77 |
-
"\n",
|
78 |
-
"class CustomFlaxBartModule(FlaxBartModule):\n",
|
79 |
-
" def setup(self):\n",
|
80 |
-
" # we keep shared to easily load pre-trained weights\n",
|
81 |
-
" self.shared = nn.Embed(\n",
|
82 |
-
" self.config.vocab_size,\n",
|
83 |
-
" self.config.d_model,\n",
|
84 |
-
" embedding_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),\n",
|
85 |
-
" dtype=self.dtype,\n",
|
86 |
-
" )\n",
|
87 |
-
" # a separate embedding is used for the decoder\n",
|
88 |
-
" self.decoder_embed = nn.Embed(\n",
|
89 |
-
" OUTPUT_VOCAB_SIZE,\n",
|
90 |
-
" self.config.d_model,\n",
|
91 |
-
" embedding_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),\n",
|
92 |
-
" dtype=self.dtype,\n",
|
93 |
-
" )\n",
|
94 |
-
" self.encoder = FlaxBartEncoder(self.config, dtype=self.dtype, embed_tokens=self.shared)\n",
|
95 |
-
"\n",
|
96 |
-
" # the decoder has a different config\n",
|
97 |
-
" decoder_config = BartConfig(self.config.to_dict())\n",
|
98 |
-
" decoder_config.max_position_embeddings = OUTPUT_LENGTH\n",
|
99 |
-
" decoder_config.vocab_size = OUTPUT_VOCAB_SIZE\n",
|
100 |
-
" self.decoder = FlaxBartDecoder(decoder_config, dtype=self.dtype, embed_tokens=self.decoder_embed)\n",
|
101 |
-
"\n",
|
102 |
-
"class CustomFlaxBartForConditionalGenerationModule(FlaxBartForConditionalGenerationModule):\n",
|
103 |
-
" def setup(self):\n",
|
104 |
-
" self.model = CustomFlaxBartModule(config=self.config, dtype=self.dtype)\n",
|
105 |
-
" self.lm_head = nn.Dense(\n",
|
106 |
-
" OUTPUT_VOCAB_SIZE,\n",
|
107 |
-
" use_bias=False,\n",
|
108 |
-
" dtype=self.dtype,\n",
|
109 |
-
" kernel_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),\n",
|
110 |
-
" )\n",
|
111 |
-
" self.final_logits_bias = self.param(\"final_logits_bias\", self.bias_init, (1, OUTPUT_VOCAB_SIZE))\n",
|
112 |
-
"\n",
|
113 |
-
"class CustomFlaxBartForConditionalGeneration(FlaxBartForConditionalGeneration):\n",
|
114 |
-
" module_class = CustomFlaxBartForConditionalGenerationModule"
|
115 |
-
]
|
116 |
-
},
|
117 |
-
{
|
118 |
-
"cell_type": "code",
|
119 |
-
"execution_count": null,
|
120 |
-
"metadata": {
|
121 |
-
"colab": {
|
122 |
-
"base_uri": "https://localhost:8080/"
|
123 |
-
},
|
124 |
-
"id": "S7CP9Td9m2ge",
|
125 |
-
"outputId": "5638ef68-9c40-46f7-90ba-a4d05b61360d"
|
126 |
-
},
|
127 |
-
"outputs": [],
|
128 |
-
"source": [
|
129 |
-
"# load pre-trained model for encoder weights\n",
|
130 |
-
"base_model = FlaxBartForConditionalGeneration.from_pretrained(BASE_MODEL)"
|
131 |
-
]
|
132 |
-
},
|
133 |
-
{
|
134 |
-
"cell_type": "code",
|
135 |
-
"execution_count": null,
|
136 |
-
"metadata": {
|
137 |
-
"id": "6lmynR-poceH"
|
138 |
-
},
|
139 |
-
"outputs": [],
|
140 |
-
"source": [
|
141 |
-
"# set up our new model config\n",
|
142 |
-
"config = BartConfig.from_pretrained(BASE_MODEL)\n",
|
143 |
-
"config.tie_word_embeddings = False\n",
|
144 |
-
"config.decoder_start_token_id = BOS_TOKEN_ID\n",
|
145 |
-
"config.bos_token_id = BOS_TOKEN_ID # should not be used\n",
|
146 |
-
"config.pos_token_id = BOS_TOKEN_ID # should not be used\n",
|
147 |
-
"#config.eos_token_id = None # prevents generation from stopping until we reach max_length"
|
148 |
-
]
|
149 |
-
},
|
150 |
-
{
|
151 |
-
"cell_type": "code",
|
152 |
-
"execution_count": null,
|
153 |
-
"metadata": {
|
154 |
-
"id": "_6-XKK40oEfP"
|
155 |
-
},
|
156 |
-
"outputs": [],
|
157 |
-
"source": [
|
158 |
-
"# create our model and initialize it randomly\n",
|
159 |
-
"model = CustomFlaxBartForConditionalGeneration(config)"
|
160 |
-
]
|
161 |
-
},
|
162 |
-
{
|
163 |
-
"cell_type": "code",
|
164 |
-
"execution_count": null,
|
165 |
-
"metadata": {
|
166 |
-
"id": "-r_hZestr-NR"
|
167 |
-
},
|
168 |
-
"outputs": [],
|
169 |
-
"source": [
|
170 |
-
"# use pretrained weights\n",
|
171 |
-
"model.params['model']['encoder'] = base_model.params['model']['encoder']\n",
|
172 |
-
"model.params['model']['shared'] = base_model.params['model']['shared']"
|
173 |
-
]
|
174 |
-
},
|
175 |
-
{
|
176 |
-
"cell_type": "code",
|
177 |
-
"execution_count": null,
|
178 |
-
"metadata": {
|
179 |
-
"id": "5NEX8f62sVjx"
|
180 |
-
},
|
181 |
-
"outputs": [],
|
182 |
-
"source": [
|
183 |
-
"# no need for base_model anymore\n",
|
184 |
-
"del base_model"
|
185 |
-
]
|
186 |
-
},
|
187 |
-
{
|
188 |
-
"cell_type": "code",
|
189 |
-
"execution_count": null,
|
190 |
-
"metadata": {
|
191 |
-
"colab": {
|
192 |
-
"base_uri": "https://localhost:8080/"
|
193 |
-
},
|
194 |
-
"id": "Jz032w73nHEf",
|
195 |
-
"outputId": "994d8e85-bff7-480b-8b69-f69dedc15c49"
|
196 |
-
},
|
197 |
-
"outputs": [],
|
198 |
-
"source": [
|
199 |
-
"# we verify that the shape has not been modified\n",
|
200 |
-
"model.params['final_logits_bias'].shape"
|
201 |
-
]
|
202 |
-
},
|
203 |
-
{
|
204 |
-
"cell_type": "markdown",
|
205 |
-
"metadata": {
|
206 |
-
"id": "zLl24Ez5t7x1"
|
207 |
-
},
|
208 |
-
"source": [
|
209 |
-
"## Inference"
|
210 |
-
]
|
211 |
-
},
|
212 |
-
{
|
213 |
-
"cell_type": "code",
|
214 |
-
"execution_count": null,
|
215 |
-
"metadata": {
|
216 |
-
"id": "XLLA2NK3uDQr"
|
217 |
-
},
|
218 |
-
"outputs": [],
|
219 |
-
"source": [
|
220 |
-
"tokenizer = BartTokenizer.from_pretrained(BASE_MODEL)"
|
221 |
-
]
|
222 |
-
},
|
223 |
-
{
|
224 |
-
"cell_type": "code",
|
225 |
-
"execution_count": null,
|
226 |
-
"metadata": {
|
227 |
-
"colab": {
|
228 |
-
"base_uri": "https://localhost:8080/"
|
229 |
-
},
|
230 |
-
"id": "Ntow53I_t81D",
|
231 |
-
"outputId": "59289cdd-1429-4720-cc87-88810c4b99ac"
|
232 |
-
},
|
233 |
-
"outputs": [],
|
234 |
-
"source": [
|
235 |
-
"text = \"My friends are cool but they eat too many carbs.\"\n",
|
236 |
-
"inputs = tokenizer(text, max_length=1024, return_tensors='jax')\n",
|
237 |
-
"encoder_outputs = model.encode(**inputs)"
|
238 |
-
]
|
239 |
-
},
|
240 |
-
{
|
241 |
-
"cell_type": "code",
|
242 |
-
"execution_count": null,
|
243 |
-
"metadata": {
|
244 |
-
"colab": {
|
245 |
-
"base_uri": "https://localhost:8080/"
|
246 |
-
},
|
247 |
-
"id": "vcRNJnJ_uJOJ",
|
248 |
-
"outputId": "025afd54-7908-4a9c-fb59-e40bd3458711"
|
249 |
-
},
|
250 |
-
"outputs": [],
|
251 |
-
"source": [
|
252 |
-
"decoder_start_token_id = model.config.decoder_start_token_id\n",
|
253 |
-
"decoder_start_token_id"
|
254 |
-
]
|
255 |
-
},
|
256 |
-
{
|
257 |
-
"cell_type": "code",
|
258 |
-
"execution_count": null,
|
259 |
-
"metadata": {
|
260 |
-
"id": "6QWmEwL_uMld"
|
261 |
-
},
|
262 |
-
"outputs": [],
|
263 |
-
"source": [
|
264 |
-
"decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype=\"i4\") * decoder_start_token_id\n",
|
265 |
-
"outputs = model.decode(decoder_input_ids, encoder_outputs)"
|
266 |
-
]
|
267 |
-
},
|
268 |
-
{
|
269 |
-
"cell_type": "code",
|
270 |
-
"execution_count": null,
|
271 |
-
"metadata": {
|
272 |
-
"colab": {
|
273 |
-
"base_uri": "https://localhost:8080/"
|
274 |
-
},
|
275 |
-
"id": "c_ys3yWBothF",
|
276 |
-
"outputId": "40d4d584-e0a8-44cb-bbea-0ffa38d50a53"
|
277 |
-
},
|
278 |
-
"outputs": [],
|
279 |
-
"source": [
|
280 |
-
"outputs"
|
281 |
-
]
|
282 |
-
},
|
283 |
-
{
|
284 |
-
"cell_type": "code",
|
285 |
-
"execution_count": null,
|
286 |
-
"metadata": {
|
287 |
-
"colab": {
|
288 |
-
"base_uri": "https://localhost:8080/"
|
289 |
-
},
|
290 |
-
"id": "O6s0wtB_uTC_",
|
291 |
-
"outputId": "bc0e9e80-e346-4e99-d28e-3f658eda1f66"
|
292 |
-
},
|
293 |
-
"outputs": [],
|
294 |
-
"source": [
|
295 |
-
"outputs.logits.shape"
|
296 |
-
]
|
297 |
-
},
|
298 |
-
{
|
299 |
-
"cell_type": "code",
|
300 |
-
"execution_count": null,
|
301 |
-
"metadata": {
|
302 |
-
"colab": {
|
303 |
-
"base_uri": "https://localhost:8080/"
|
304 |
-
},
|
305 |
-
"id": "ELzemGP3uBzy",
|
306 |
-
"outputId": "dc12f98a-1ccf-450d-ba2a-9c29d7d14885"
|
307 |
-
},
|
308 |
-
"outputs": [],
|
309 |
-
"source": [
|
310 |
-
"outputs.logits.argmax(axis=-1)"
|
311 |
-
]
|
312 |
-
},
|
313 |
-
{
|
314 |
-
"cell_type": "code",
|
315 |
-
"execution_count": null,
|
316 |
-
"metadata": {
|
317 |
-
"colab": {
|
318 |
-
"base_uri": "https://localhost:8080/"
|
319 |
-
},
|
320 |
-
"id": "fQjikkGEunpx",
|
321 |
-
"outputId": "3dba0209-ad4e-4069-be38-6c599c677ef1"
|
322 |
-
},
|
323 |
-
"outputs": [],
|
324 |
-
"source": [
|
325 |
-
"model.config.bos_token_id, model.config.eos_token_id, model.config.pad_token_id"
|
326 |
-
]
|
327 |
-
},
|
328 |
-
{
|
329 |
-
"cell_type": "code",
|
330 |
-
"execution_count": null,
|
331 |
-
"metadata": {
|
332 |
-
"id": "P32mJJSbrU1F"
|
333 |
-
},
|
334 |
-
"outputs": [],
|
335 |
-
"source": [
|
336 |
-
"input_ids_test = tokenizer.encode('I enjoy walking with my cute dog', return_tensors='jax')"
|
337 |
-
]
|
338 |
-
},
|
339 |
-
{
|
340 |
-
"cell_type": "code",
|
341 |
-
"execution_count": null,
|
342 |
-
"metadata": {
|
343 |
-
"id": "C7cHbIHruELT"
|
344 |
-
},
|
345 |
-
"outputs": [],
|
346 |
-
"source": [
|
347 |
-
"greedy_output = model.generate(input_ids_test, max_length=50)"
|
348 |
-
]
|
349 |
-
},
|
350 |
-
{
|
351 |
-
"cell_type": "code",
|
352 |
-
"execution_count": null,
|
353 |
-
"metadata": {
|
354 |
-
"colab": {
|
355 |
-
"base_uri": "https://localhost:8080/"
|
356 |
-
},
|
357 |
-
"id": "jYugh9cOuwc9",
|
358 |
-
"outputId": "19c3a2ee-e7bc-4f1f-9c86-06bd7337b537"
|
359 |
-
},
|
360 |
-
"outputs": [],
|
361 |
-
"source": [
|
362 |
-
"greedy_output[0]"
|
363 |
-
]
|
364 |
-
}
|
365 |
-
],
|
366 |
-
"metadata": {
|
367 |
-
"accelerator": "TPU",
|
368 |
-
"colab": {
|
369 |
-
"collapsed_sections": [],
|
370 |
-
"machine_shape": "hm",
|
371 |
-
"name": "CustomBARTv4b-model-generate.ipynb",
|
372 |
-
"provenance": []
|
373 |
-
},
|
374 |
-
"kernelspec": {
|
375 |
-
"display_name": "Python 3 (ipykernel)",
|
376 |
-
"language": "python",
|
377 |
-
"name": "python3"
|
378 |
-
},
|
379 |
-
"language_info": {
|
380 |
-
"codemirror_mode": {
|
381 |
-
"name": "ipython",
|
382 |
-
"version": 3
|
383 |
-
},
|
384 |
-
"file_extension": ".py",
|
385 |
-
"mimetype": "text/x-python",
|
386 |
-
"name": "python",
|
387 |
-
"nbconvert_exporter": "python",
|
388 |
-
"pygments_lexer": "ipython3",
|
389 |
-
"version": "3.8.5"
|
390 |
-
}
|
391 |
-
},
|
392 |
-
"nbformat": 4,
|
393 |
-
"nbformat_minor": 4
|
394 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dev/notebooks/demo/demo_notebook.ipynb
DELETED
@@ -1,387 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"cells": [
|
3 |
-
{
|
4 |
-
"cell_type": "markdown",
|
5 |
-
"metadata": {
|
6 |
-
"id": "ewer-Q-0w2xA"
|
7 |
-
},
|
8 |
-
"source": [
|
9 |
-
"# Installation"
|
10 |
-
]
|
11 |
-
},
|
12 |
-
{
|
13 |
-
"cell_type": "code",
|
14 |
-
"execution_count": null,
|
15 |
-
"metadata": {
|
16 |
-
"colab": {
|
17 |
-
"base_uri": "https://localhost:8080/"
|
18 |
-
},
|
19 |
-
"id": "NpsF9ipLLl2s",
|
20 |
-
"outputId": "10bf54aa-b89d-4e42-9777-bc97b00a5f32"
|
21 |
-
},
|
22 |
-
"outputs": [],
|
23 |
-
"source": [
|
24 |
-
"#!pip install git+https://github.com/huggingface/transformers/\n",
|
25 |
-
"#!pip install git+https://github.com/google/flax"
|
26 |
-
]
|
27 |
-
},
|
28 |
-
{
|
29 |
-
"cell_type": "code",
|
30 |
-
"execution_count": null,
|
31 |
-
"metadata": {
|
32 |
-
"id": "M1wVkrpjU6zO"
|
33 |
-
},
|
34 |
-
"outputs": [],
|
35 |
-
"source": [
|
36 |
-
"%load_ext autoreload\n",
|
37 |
-
"%autoreload 2"
|
38 |
-
]
|
39 |
-
},
|
40 |
-
{
|
41 |
-
"cell_type": "code",
|
42 |
-
"execution_count": null,
|
43 |
-
"metadata": {},
|
44 |
-
"outputs": [],
|
45 |
-
"source": [
|
46 |
-
"%cd ../../vqgan-jax"
|
47 |
-
]
|
48 |
-
},
|
49 |
-
{
|
50 |
-
"cell_type": "markdown",
|
51 |
-
"metadata": {
|
52 |
-
"id": "t47CH1H_IOT8"
|
53 |
-
},
|
54 |
-
"source": [
|
55 |
-
"# Custom BART Model"
|
56 |
-
]
|
57 |
-
},
|
58 |
-
{
|
59 |
-
"cell_type": "code",
|
60 |
-
"execution_count": null,
|
61 |
-
"metadata": {
|
62 |
-
"id": "9jQnM6S2vCpn"
|
63 |
-
},
|
64 |
-
"outputs": [],
|
65 |
-
"source": [
|
66 |
-
"# TODO: set those args in a config file\n",
|
67 |
-
"OUTPUT_VOCAB_SIZE = 16384 + 1 # encoded image token space + 1 for bos\n",
|
68 |
-
"OUTPUT_LENGTH = 256 + 1 # number of encoded tokens + 1 for bos\n",
|
69 |
-
"BOS_TOKEN_ID = 16384\n",
|
70 |
-
"BASE_MODEL = 'facebook/bart-large'"
|
71 |
-
]
|
72 |
-
},
|
73 |
-
{
|
74 |
-
"cell_type": "code",
|
75 |
-
"execution_count": null,
|
76 |
-
"metadata": {
|
77 |
-
"id": "_eEaJVxAKpV5"
|
78 |
-
},
|
79 |
-
"outputs": [],
|
80 |
-
"source": [
|
81 |
-
"import jax\n",
|
82 |
-
"import flax.linen as nn\n",
|
83 |
-
"\n",
|
84 |
-
"from transformers.models.bart.modeling_flax_bart import *\n",
|
85 |
-
"from transformers import BartTokenizer, FlaxBartForConditionalGeneration\n",
|
86 |
-
"\n",
|
87 |
-
"class CustomFlaxBartModule(FlaxBartModule):\n",
|
88 |
-
" def setup(self):\n",
|
89 |
-
" # we keep shared to easily load pre-trained weights\n",
|
90 |
-
" self.shared = nn.Embed(\n",
|
91 |
-
" self.config.vocab_size,\n",
|
92 |
-
" self.config.d_model,\n",
|
93 |
-
" embedding_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),\n",
|
94 |
-
" dtype=self.dtype,\n",
|
95 |
-
" )\n",
|
96 |
-
" # a separate embedding is used for the decoder\n",
|
97 |
-
" self.decoder_embed = nn.Embed(\n",
|
98 |
-
" OUTPUT_VOCAB_SIZE,\n",
|
99 |
-
" self.config.d_model,\n",
|
100 |
-
" embedding_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),\n",
|
101 |
-
" dtype=self.dtype,\n",
|
102 |
-
" )\n",
|
103 |
-
" self.encoder = FlaxBartEncoder(self.config, dtype=self.dtype, embed_tokens=self.shared)\n",
|
104 |
-
"\n",
|
105 |
-
" # the decoder has a different config\n",
|
106 |
-
" decoder_config = BartConfig(self.config.to_dict())\n",
|
107 |
-
" decoder_config.max_position_embeddings = OUTPUT_LENGTH\n",
|
108 |
-
" decoder_config.vocab_size = OUTPUT_VOCAB_SIZE\n",
|
109 |
-
" self.decoder = FlaxBartDecoder(decoder_config, dtype=self.dtype, embed_tokens=self.decoder_embed)\n",
|
110 |
-
"\n",
|
111 |
-
"class CustomFlaxBartForConditionalGenerationModule(FlaxBartForConditionalGenerationModule):\n",
|
112 |
-
" def setup(self):\n",
|
113 |
-
" self.model = CustomFlaxBartModule(config=self.config, dtype=self.dtype)\n",
|
114 |
-
" self.lm_head = nn.Dense(\n",
|
115 |
-
" OUTPUT_VOCAB_SIZE,\n",
|
116 |
-
" use_bias=False,\n",
|
117 |
-
" dtype=self.dtype,\n",
|
118 |
-
" kernel_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),\n",
|
119 |
-
" )\n",
|
120 |
-
" self.final_logits_bias = self.param(\"final_logits_bias\", self.bias_init, (1, OUTPUT_VOCAB_SIZE))\n",
|
121 |
-
"\n",
|
122 |
-
"class CustomFlaxBartForConditionalGeneration(FlaxBartForConditionalGeneration):\n",
|
123 |
-
" module_class = CustomFlaxBartForConditionalGenerationModule"
|
124 |
-
]
|
125 |
-
},
|
126 |
-
{
|
127 |
-
"cell_type": "code",
|
128 |
-
"execution_count": null,
|
129 |
-
"metadata": {
|
130 |
-
"scrolled": true
|
131 |
-
},
|
132 |
-
"outputs": [],
|
133 |
-
"source": [
|
134 |
-
"import wandb\n",
|
135 |
-
"run = wandb.init()\n",
|
136 |
-
"artifact = run.use_artifact('wandb/hf-flax-dalle-mini/model-1ef8yxby:latest', type='bart_model')\n",
|
137 |
-
"artifact_dir = artifact.download()"
|
138 |
-
]
|
139 |
-
},
|
140 |
-
{
|
141 |
-
"cell_type": "code",
|
142 |
-
"execution_count": null,
|
143 |
-
"metadata": {
|
144 |
-
"id": "_6-XKK40oEfP",
|
145 |
-
"scrolled": true
|
146 |
-
},
|
147 |
-
"outputs": [],
|
148 |
-
"source": [
|
149 |
-
"# create our model and initialize it randomly\n",
|
150 |
-
"model = CustomFlaxBartForConditionalGeneration.from_pretrained(artifact_dir)"
|
151 |
-
]
|
152 |
-
},
|
153 |
-
{
|
154 |
-
"cell_type": "code",
|
155 |
-
"execution_count": null,
|
156 |
-
"metadata": {},
|
157 |
-
"outputs": [],
|
158 |
-
"source": [
|
159 |
-
"model.config.forced_bos_token_id = None"
|
160 |
-
]
|
161 |
-
},
|
162 |
-
{
|
163 |
-
"cell_type": "code",
|
164 |
-
"execution_count": null,
|
165 |
-
"metadata": {
|
166 |
-
"colab": {
|
167 |
-
"base_uri": "https://localhost:8080/"
|
168 |
-
},
|
169 |
-
"id": "Jz032w73nHEf",
|
170 |
-
"outputId": "994d8e85-bff7-480b-8b69-f69dedc15c49"
|
171 |
-
},
|
172 |
-
"outputs": [],
|
173 |
-
"source": [
|
174 |
-
"# we verify that the shape has not been modified\n",
|
175 |
-
"model.params['final_logits_bias'].shape"
|
176 |
-
]
|
177 |
-
},
|
178 |
-
{
|
179 |
-
"cell_type": "markdown",
|
180 |
-
"metadata": {
|
181 |
-
"id": "zLl24Ez5t7x1"
|
182 |
-
},
|
183 |
-
"source": [
|
184 |
-
"## Inference"
|
185 |
-
]
|
186 |
-
},
|
187 |
-
{
|
188 |
-
"cell_type": "code",
|
189 |
-
"execution_count": null,
|
190 |
-
"metadata": {
|
191 |
-
"id": "XLLA2NK3uDQr"
|
192 |
-
},
|
193 |
-
"outputs": [],
|
194 |
-
"source": [
|
195 |
-
"tokenizer = BartTokenizer.from_pretrained(BASE_MODEL)"
|
196 |
-
]
|
197 |
-
},
|
198 |
-
{
|
199 |
-
"cell_type": "code",
|
200 |
-
"execution_count": null,
|
201 |
-
"metadata": {},
|
202 |
-
"outputs": [],
|
203 |
-
"source": [
|
204 |
-
"input_text = ['I enjoy walking with my cute dog']*8"
|
205 |
-
]
|
206 |
-
},
|
207 |
-
{
|
208 |
-
"cell_type": "code",
|
209 |
-
"execution_count": null,
|
210 |
-
"metadata": {
|
211 |
-
"id": "P32mJJSbrU1F"
|
212 |
-
},
|
213 |
-
"outputs": [],
|
214 |
-
"source": [
|
215 |
-
"input_ids_test = tokenizer(input_text, return_tensors='jax')"
|
216 |
-
]
|
217 |
-
},
|
218 |
-
{
|
219 |
-
"cell_type": "code",
|
220 |
-
"execution_count": null,
|
221 |
-
"metadata": {},
|
222 |
-
"outputs": [],
|
223 |
-
"source": [
|
224 |
-
"input_ids_test"
|
225 |
-
]
|
226 |
-
},
|
227 |
-
{
|
228 |
-
"cell_type": "code",
|
229 |
-
"execution_count": null,
|
230 |
-
"metadata": {
|
231 |
-
"id": "C7cHbIHruELT"
|
232 |
-
},
|
233 |
-
"outputs": [],
|
234 |
-
"source": [
|
235 |
-
"greedy_output = model.generate(input_ids_test['input_ids'], max_length=257)"
|
236 |
-
]
|
237 |
-
},
|
238 |
-
{
|
239 |
-
"cell_type": "code",
|
240 |
-
"execution_count": null,
|
241 |
-
"metadata": {},
|
242 |
-
"outputs": [],
|
243 |
-
"source": [
|
244 |
-
"greedy_output[0].shape"
|
245 |
-
]
|
246 |
-
},
|
247 |
-
{
|
248 |
-
"cell_type": "code",
|
249 |
-
"execution_count": null,
|
250 |
-
"metadata": {
|
251 |
-
"colab": {
|
252 |
-
"base_uri": "https://localhost:8080/"
|
253 |
-
},
|
254 |
-
"id": "jYugh9cOuwc9",
|
255 |
-
"outputId": "19c3a2ee-e7bc-4f1f-9c86-06bd7337b537"
|
256 |
-
},
|
257 |
-
"outputs": [],
|
258 |
-
"source": [
|
259 |
-
"greedy_output[0]"
|
260 |
-
]
|
261 |
-
},
|
262 |
-
{
|
263 |
-
"cell_type": "code",
|
264 |
-
"execution_count": null,
|
265 |
-
"metadata": {},
|
266 |
-
"outputs": [],
|
267 |
-
"source": [
|
268 |
-
"greedy_output[0][0]"
|
269 |
-
]
|
270 |
-
},
|
271 |
-
{
|
272 |
-
"cell_type": "markdown",
|
273 |
-
"metadata": {},
|
274 |
-
"source": [
|
275 |
-
"# VGAN Jax"
|
276 |
-
]
|
277 |
-
},
|
278 |
-
{
|
279 |
-
"cell_type": "code",
|
280 |
-
"execution_count": null,
|
281 |
-
"metadata": {},
|
282 |
-
"outputs": [],
|
283 |
-
"source": [
|
284 |
-
"import io\n",
|
285 |
-
"\n",
|
286 |
-
"import requests\n",
|
287 |
-
"from PIL import Image\n",
|
288 |
-
"import numpy as np\n",
|
289 |
-
"\n",
|
290 |
-
"import torch\n",
|
291 |
-
"import torchvision.transforms as T\n",
|
292 |
-
"import torchvision.transforms.functional as TF\n",
|
293 |
-
"from torchvision.transforms import InterpolationMode"
|
294 |
-
]
|
295 |
-
},
|
296 |
-
{
|
297 |
-
"cell_type": "code",
|
298 |
-
"execution_count": null,
|
299 |
-
"metadata": {},
|
300 |
-
"outputs": [],
|
301 |
-
"source": [
|
302 |
-
"from modeling_flax_vqgan import VQModel"
|
303 |
-
]
|
304 |
-
},
|
305 |
-
{
|
306 |
-
"cell_type": "code",
|
307 |
-
"execution_count": null,
|
308 |
-
"metadata": {},
|
309 |
-
"outputs": [],
|
310 |
-
"source": [
|
311 |
-
"def custom_to_pil(x):\n",
|
312 |
-
" x = np.clip(x, 0., 1.)\n",
|
313 |
-
" x = (255*x).astype(np.uint8)\n",
|
314 |
-
" x = Image.fromarray(x)\n",
|
315 |
-
" if not x.mode == \"RGB\":\n",
|
316 |
-
" x = x.convert(\"RGB\")\n",
|
317 |
-
" return x"
|
318 |
-
]
|
319 |
-
},
|
320 |
-
{
|
321 |
-
"cell_type": "code",
|
322 |
-
"execution_count": null,
|
323 |
-
"metadata": {
|
324 |
-
"colab": {
|
325 |
-
"base_uri": "https://localhost:8080/"
|
326 |
-
},
|
327 |
-
"id": "Jz032w73nHEf",
|
328 |
-
"outputId": "994d8e85-bff7-480b-8b69-f69dedc15c49",
|
329 |
-
"scrolled": true
|
330 |
-
},
|
331 |
-
"outputs": [],
|
332 |
-
"source": [
|
333 |
-
"model = VQModel.from_pretrained(\"flax-community/vqgan_f16_16384\")"
|
334 |
-
]
|
335 |
-
},
|
336 |
-
{
|
337 |
-
"cell_type": "code",
|
338 |
-
"execution_count": null,
|
339 |
-
"metadata": {},
|
340 |
-
"outputs": [],
|
341 |
-
"source": [
|
342 |
-
"def get_images(indices, model):\n",
|
343 |
-
" indices = indices[:, 1:]\n",
|
344 |
-
" print(indices.shape)\n",
|
345 |
-
" img = model.decode_code(indices)\n",
|
346 |
-
" return img"
|
347 |
-
]
|
348 |
-
},
|
349 |
-
{
|
350 |
-
"cell_type": "code",
|
351 |
-
"execution_count": null,
|
352 |
-
"metadata": {},
|
353 |
-
"outputs": [],
|
354 |
-
"source": [
|
355 |
-
"custom_to_pil(np.asarray(get_images(jnp.expand_dims(greedy_output[0][0],0), model)[0]))"
|
356 |
-
]
|
357 |
-
}
|
358 |
-
],
|
359 |
-
"metadata": {
|
360 |
-
"accelerator": "TPU",
|
361 |
-
"colab": {
|
362 |
-
"collapsed_sections": [],
|
363 |
-
"machine_shape": "hm",
|
364 |
-
"name": "CustomBARTv4b-model-generate.ipynb",
|
365 |
-
"provenance": []
|
366 |
-
},
|
367 |
-
"kernelspec": {
|
368 |
-
"display_name": "Python 3 (ipykernel)",
|
369 |
-
"language": "python",
|
370 |
-
"name": "python3"
|
371 |
-
},
|
372 |
-
"language_info": {
|
373 |
-
"codemirror_mode": {
|
374 |
-
"name": "ipython",
|
375 |
-
"version": 3
|
376 |
-
},
|
377 |
-
"file_extension": ".py",
|
378 |
-
"mimetype": "text/x-python",
|
379 |
-
"name": "python",
|
380 |
-
"nbconvert_exporter": "python",
|
381 |
-
"pygments_lexer": "ipython3",
|
382 |
-
"version": "3.8.5"
|
383 |
-
}
|
384 |
-
},
|
385 |
-
"nbformat": 4,
|
386 |
-
"nbformat_minor": 4
|
387 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dev/notebooks/demo/model-sweep.py
DELETED
@@ -1,216 +0,0 @@
|
|
1 |
-
#!/usr/bin/env python
|
2 |
-
# coding: utf-8
|
3 |
-
|
4 |
-
import random
|
5 |
-
|
6 |
-
import jax
|
7 |
-
import flax.linen as nn
|
8 |
-
from flax.training.common_utils import shard
|
9 |
-
from flax.jax_utils import replicate, unreplicate
|
10 |
-
|
11 |
-
from transformers.models.bart.modeling_flax_bart import *
|
12 |
-
from transformers import BartTokenizer, FlaxBartForConditionalGeneration
|
13 |
-
|
14 |
-
from PIL import Image
|
15 |
-
import numpy as np
|
16 |
-
import matplotlib.pyplot as plt
|
17 |
-
|
18 |
-
import torchvision.transforms as T
|
19 |
-
import torchvision.transforms.functional as TF
|
20 |
-
from torchvision.transforms import InterpolationMode
|
21 |
-
|
22 |
-
from vqgan_jax.modeling_flax_vqgan import VQModel
|
23 |
-
|
24 |
-
# TODO: set those args in a config file
|
25 |
-
OUTPUT_VOCAB_SIZE = 16384 + 1 # encoded image token space + 1 for bos
|
26 |
-
OUTPUT_LENGTH = 256 + 1 # number of encoded tokens + 1 for bos
|
27 |
-
BOS_TOKEN_ID = 16384
|
28 |
-
BASE_MODEL = 'facebook/bart-large-cnn'
|
29 |
-
WANDB_MODEL = '3iwhu4w6'
|
30 |
-
|
31 |
-
class CustomFlaxBartModule(FlaxBartModule):
|
32 |
-
def setup(self):
|
33 |
-
# we keep shared to easily load pre-trained weights
|
34 |
-
self.shared = nn.Embed(
|
35 |
-
self.config.vocab_size,
|
36 |
-
self.config.d_model,
|
37 |
-
embedding_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),
|
38 |
-
dtype=self.dtype,
|
39 |
-
)
|
40 |
-
# a separate embedding is used for the decoder
|
41 |
-
self.decoder_embed = nn.Embed(
|
42 |
-
OUTPUT_VOCAB_SIZE,
|
43 |
-
self.config.d_model,
|
44 |
-
embedding_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),
|
45 |
-
dtype=self.dtype,
|
46 |
-
)
|
47 |
-
self.encoder = FlaxBartEncoder(self.config, dtype=self.dtype, embed_tokens=self.shared)
|
48 |
-
|
49 |
-
# the decoder has a different config
|
50 |
-
decoder_config = BartConfig(self.config.to_dict())
|
51 |
-
decoder_config.max_position_embeddings = OUTPUT_LENGTH
|
52 |
-
decoder_config.vocab_size = OUTPUT_VOCAB_SIZE
|
53 |
-
self.decoder = FlaxBartDecoder(decoder_config, dtype=self.dtype, embed_tokens=self.decoder_embed)
|
54 |
-
|
55 |
-
class CustomFlaxBartForConditionalGenerationModule(FlaxBartForConditionalGenerationModule):
|
56 |
-
def setup(self):
|
57 |
-
self.model = CustomFlaxBartModule(config=self.config, dtype=self.dtype)
|
58 |
-
self.lm_head = nn.Dense(
|
59 |
-
OUTPUT_VOCAB_SIZE,
|
60 |
-
use_bias=False,
|
61 |
-
dtype=self.dtype,
|
62 |
-
kernel_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),
|
63 |
-
)
|
64 |
-
self.final_logits_bias = self.param("final_logits_bias", self.bias_init, (1, OUTPUT_VOCAB_SIZE))
|
65 |
-
|
66 |
-
class CustomFlaxBartForConditionalGeneration(FlaxBartForConditionalGeneration):
|
67 |
-
module_class = CustomFlaxBartForConditionalGenerationModule
|
68 |
-
|
69 |
-
tokenizer = BartTokenizer.from_pretrained(BASE_MODEL)
|
70 |
-
vqgan = VQModel.from_pretrained("flax-community/vqgan_f16_16384")
|
71 |
-
|
72 |
-
def custom_to_pil(x):
|
73 |
-
x = np.clip(x, 0., 1.)
|
74 |
-
x = (255*x).astype(np.uint8)
|
75 |
-
x = Image.fromarray(x)
|
76 |
-
if not x.mode == "RGB":
|
77 |
-
x = x.convert("RGB")
|
78 |
-
return x
|
79 |
-
|
80 |
-
def generate(input, rng, params):
|
81 |
-
return model.generate(
|
82 |
-
**input,
|
83 |
-
max_length=257,
|
84 |
-
num_beams=1,
|
85 |
-
do_sample=True,
|
86 |
-
prng_key=rng,
|
87 |
-
eos_token_id=50000,
|
88 |
-
pad_token_id=50000,
|
89 |
-
params=params,
|
90 |
-
)
|
91 |
-
|
92 |
-
def get_images(indices, params):
|
93 |
-
return vqgan.decode_code(indices, params=params)
|
94 |
-
|
95 |
-
def plot_images(images):
|
96 |
-
fig = plt.figure(figsize=(40, 20))
|
97 |
-
columns = 4
|
98 |
-
rows = 2
|
99 |
-
plt.subplots_adjust(hspace=0, wspace=0)
|
100 |
-
|
101 |
-
for i in range(1, columns*rows +1):
|
102 |
-
fig.add_subplot(rows, columns, i)
|
103 |
-
plt.imshow(images[i-1])
|
104 |
-
plt.gca().axes.get_yaxis().set_visible(False)
|
105 |
-
plt.show()
|
106 |
-
|
107 |
-
def stack_reconstructions(images):
|
108 |
-
w, h = images[0].size[0], images[0].size[1]
|
109 |
-
img = Image.new("RGB", (len(images)*w, h))
|
110 |
-
for i, img_ in enumerate(images):
|
111 |
-
img.paste(img_, (i*w,0))
|
112 |
-
return img
|
113 |
-
|
114 |
-
p_generate = jax.pmap(generate, "batch")
|
115 |
-
p_get_images = jax.pmap(get_images, "batch")
|
116 |
-
|
117 |
-
# ## CLIP Scoring
|
118 |
-
from transformers import CLIPProcessor, FlaxCLIPModel
|
119 |
-
|
120 |
-
clip = FlaxCLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
121 |
-
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
122 |
-
|
123 |
-
def hallucinate(prompt, num_images=64):
|
124 |
-
prompt = [prompt] * jax.device_count()
|
125 |
-
inputs = tokenizer(prompt, return_tensors='jax', padding="max_length", truncation=True, max_length=128).data
|
126 |
-
inputs = shard(inputs)
|
127 |
-
|
128 |
-
all_images = []
|
129 |
-
for i in range(num_images // jax.device_count()):
|
130 |
-
key = random.randint(0, 1e7)
|
131 |
-
rng = jax.random.PRNGKey(key)
|
132 |
-
rngs = jax.random.split(rng, jax.local_device_count())
|
133 |
-
indices = p_generate(inputs, rngs, bart_params).sequences
|
134 |
-
indices = indices[:, :, 1:]
|
135 |
-
|
136 |
-
images = p_get_images(indices, vqgan_params)
|
137 |
-
images = np.squeeze(np.asarray(images), 1)
|
138 |
-
for image in images:
|
139 |
-
all_images.append(custom_to_pil(image))
|
140 |
-
return all_images
|
141 |
-
|
142 |
-
def clip_top_k(prompt, images, k=8):
|
143 |
-
inputs = processor(text=prompt, images=images, return_tensors="np", padding=True)
|
144 |
-
outputs = clip(**inputs)
|
145 |
-
logits = outputs.logits_per_text
|
146 |
-
scores = np.array(logits[0]).argsort()[-k:][::-1]
|
147 |
-
return [images[score] for score in scores]
|
148 |
-
|
149 |
-
from PIL import ImageDraw, ImageFont
|
150 |
-
|
151 |
-
def captioned_strip(images, caption):
|
152 |
-
w, h = images[0].size[0], images[0].size[1]
|
153 |
-
img = Image.new("RGB", (len(images)*w, h + 48))
|
154 |
-
for i, img_ in enumerate(images):
|
155 |
-
img.paste(img_, (i*w, 48))
|
156 |
-
draw = ImageDraw.Draw(img)
|
157 |
-
font = ImageFont.truetype("/usr/share/fonts/truetype/liberation2/LiberationMono-Bold.ttf", 40)
|
158 |
-
draw.text((20, 3), caption, (255,255,255), font=font)
|
159 |
-
return img
|
160 |
-
|
161 |
-
def log_to_wandb(prompts):
|
162 |
-
strips = []
|
163 |
-
for prompt in prompts:
|
164 |
-
print(f"Generating candidates for: {prompt}")
|
165 |
-
images = hallucinate(prompt, num_images=32)
|
166 |
-
selected = clip_top_k(prompt, images, k=8)
|
167 |
-
strip = captioned_strip(selected, prompt)
|
168 |
-
strips.append(wandb.Image(strip))
|
169 |
-
wandb.log({"images": strips})
|
170 |
-
|
171 |
-
## Artifact loop
|
172 |
-
|
173 |
-
import wandb
|
174 |
-
import os
|
175 |
-
os.environ["WANDB_SILENT"] = "true"
|
176 |
-
os.environ["WANDB_CONSOLE"] = "off"
|
177 |
-
|
178 |
-
id = wandb.util.generate_id()
|
179 |
-
print(f"Logging images to wandb run id: {id}")
|
180 |
-
|
181 |
-
run = wandb.init(id=id,
|
182 |
-
entity='wandb',
|
183 |
-
project="hf-flax-dalle-mini",
|
184 |
-
job_type="predictions",
|
185 |
-
resume="allow"
|
186 |
-
)
|
187 |
-
|
188 |
-
artifact = run.use_artifact('wandb/hf-flax-dalle-mini/model-3iwhu4w6:v0', type='bart_model')
|
189 |
-
producer_run = artifact.logged_by()
|
190 |
-
logged_artifacts = producer_run.logged_artifacts()
|
191 |
-
|
192 |
-
for artifact in logged_artifacts:
|
193 |
-
print(f"Generating predictions with version {artifact.version}")
|
194 |
-
artifact_dir = artifact.download()
|
195 |
-
|
196 |
-
# create our model
|
197 |
-
model = CustomFlaxBartForConditionalGeneration.from_pretrained(artifact_dir)
|
198 |
-
model.config.force_bos_token_to_be_generated = False
|
199 |
-
model.config.forced_bos_token_id = None
|
200 |
-
model.config.forced_eos_token_id = None
|
201 |
-
|
202 |
-
bart_params = replicate(model.params)
|
203 |
-
vqgan_params = replicate(vqgan.params)
|
204 |
-
|
205 |
-
prompts = prompts = [
|
206 |
-
"white snow covered mountain under blue sky during daytime",
|
207 |
-
"aerial view of beach during daytime",
|
208 |
-
"aerial view of beach at night",
|
209 |
-
"an armchair in the shape of an avocado",
|
210 |
-
"young woman riding her bike trough a forest",
|
211 |
-
"rice fields by the mediterranean coast",
|
212 |
-
"white houses on the hill of a greek coastline",
|
213 |
-
"illustration of a shark with a baby shark",
|
214 |
-
]
|
215 |
-
|
216 |
-
log_to_wandb(prompts)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dev/notebooks/demo/tpu-demo.ipynb
DELETED
@@ -1,446 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"cells": [
|
3 |
-
{
|
4 |
-
"cell_type": "markdown",
|
5 |
-
"id": "f6d33374",
|
6 |
-
"metadata": {},
|
7 |
-
"source": [
|
8 |
-
"# Test notebook with CLIP scoring"
|
9 |
-
]
|
10 |
-
},
|
11 |
-
{
|
12 |
-
"cell_type": "code",
|
13 |
-
"execution_count": null,
|
14 |
-
"id": "6eb74941-bb4d-4d7e-97f1-d5a3a07672bf",
|
15 |
-
"metadata": {},
|
16 |
-
"outputs": [],
|
17 |
-
"source": [
|
18 |
-
"# !pip install flax transformers\n",
|
19 |
-
"# !git clone https://github.com/patil-suraj/vqgan-jax.git"
|
20 |
-
]
|
21 |
-
},
|
22 |
-
{
|
23 |
-
"cell_type": "code",
|
24 |
-
"execution_count": null,
|
25 |
-
"id": "41db7534-f589-4b63-9165-9c9799e1b06e",
|
26 |
-
"metadata": {},
|
27 |
-
"outputs": [],
|
28 |
-
"source": [
|
29 |
-
"import random\n",
|
30 |
-
"\n",
|
31 |
-
"import jax\n",
|
32 |
-
"import flax.linen as nn\n",
|
33 |
-
"from flax.training.common_utils import shard\n",
|
34 |
-
"from flax.jax_utils import replicate, unreplicate\n",
|
35 |
-
"\n",
|
36 |
-
"from transformers.models.bart.modeling_flax_bart import *\n",
|
37 |
-
"from transformers import BartTokenizer, FlaxBartForConditionalGeneration\n",
|
38 |
-
"\n",
|
39 |
-
"import io\n",
|
40 |
-
"\n",
|
41 |
-
"import requests\n",
|
42 |
-
"from PIL import Image\n",
|
43 |
-
"import numpy as np\n",
|
44 |
-
"import matplotlib.pyplot as plt\n",
|
45 |
-
"\n",
|
46 |
-
"import torch\n",
|
47 |
-
"import torchvision.transforms as T\n",
|
48 |
-
"import torchvision.transforms.functional as TF\n",
|
49 |
-
"from torchvision.transforms import InterpolationMode\n",
|
50 |
-
"\n",
|
51 |
-
"jax.devices()"
|
52 |
-
]
|
53 |
-
},
|
54 |
-
{
|
55 |
-
"cell_type": "code",
|
56 |
-
"execution_count": null,
|
57 |
-
"id": "09295910",
|
58 |
-
"metadata": {},
|
59 |
-
"outputs": [],
|
60 |
-
"source": [
|
61 |
-
"from vqgan_jax.modeling_flax_vqgan import VQModel"
|
62 |
-
]
|
63 |
-
},
|
64 |
-
{
|
65 |
-
"cell_type": "code",
|
66 |
-
"execution_count": null,
|
67 |
-
"id": "b6a3462a-9004-4121-b365-3ae3aaf94dd2",
|
68 |
-
"metadata": {},
|
69 |
-
"outputs": [],
|
70 |
-
"source": [
|
71 |
-
"# TODO: set those args in a config file\n",
|
72 |
-
"OUTPUT_VOCAB_SIZE = 16384 + 1 # encoded image token space + 1 for bos\n",
|
73 |
-
"OUTPUT_LENGTH = 256 + 1 # number of encoded tokens + 1 for bos\n",
|
74 |
-
"BOS_TOKEN_ID = 16384\n",
|
75 |
-
"BASE_MODEL = 'facebook/bart-large-cnn'"
|
76 |
-
]
|
77 |
-
},
|
78 |
-
{
|
79 |
-
"cell_type": "code",
|
80 |
-
"execution_count": null,
|
81 |
-
"id": "bbef1afb-0b36-44a5-83f7-643d7e2c0e30",
|
82 |
-
"metadata": {},
|
83 |
-
"outputs": [],
|
84 |
-
"source": [
|
85 |
-
"class CustomFlaxBartModule(FlaxBartModule):\n",
|
86 |
-
" def setup(self):\n",
|
87 |
-
" # we keep shared to easily load pre-trained weights\n",
|
88 |
-
" self.shared = nn.Embed(\n",
|
89 |
-
" self.config.vocab_size,\n",
|
90 |
-
" self.config.d_model,\n",
|
91 |
-
" embedding_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),\n",
|
92 |
-
" dtype=self.dtype,\n",
|
93 |
-
" )\n",
|
94 |
-
" # a separate embedding is used for the decoder\n",
|
95 |
-
" self.decoder_embed = nn.Embed(\n",
|
96 |
-
" OUTPUT_VOCAB_SIZE,\n",
|
97 |
-
" self.config.d_model,\n",
|
98 |
-
" embedding_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),\n",
|
99 |
-
" dtype=self.dtype,\n",
|
100 |
-
" )\n",
|
101 |
-
" self.encoder = FlaxBartEncoder(self.config, dtype=self.dtype, embed_tokens=self.shared)\n",
|
102 |
-
"\n",
|
103 |
-
" # the decoder has a different config\n",
|
104 |
-
" decoder_config = BartConfig(self.config.to_dict())\n",
|
105 |
-
" decoder_config.max_position_embeddings = OUTPUT_LENGTH\n",
|
106 |
-
" decoder_config.vocab_size = OUTPUT_VOCAB_SIZE\n",
|
107 |
-
" self.decoder = FlaxBartDecoder(decoder_config, dtype=self.dtype, embed_tokens=self.decoder_embed)\n",
|
108 |
-
"\n",
|
109 |
-
"class CustomFlaxBartForConditionalGenerationModule(FlaxBartForConditionalGenerationModule):\n",
|
110 |
-
" def setup(self):\n",
|
111 |
-
" self.model = CustomFlaxBartModule(config=self.config, dtype=self.dtype)\n",
|
112 |
-
" self.lm_head = nn.Dense(\n",
|
113 |
-
" OUTPUT_VOCAB_SIZE,\n",
|
114 |
-
" use_bias=False,\n",
|
115 |
-
" dtype=self.dtype,\n",
|
116 |
-
" kernel_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),\n",
|
117 |
-
" )\n",
|
118 |
-
" self.final_logits_bias = self.param(\"final_logits_bias\", self.bias_init, (1, OUTPUT_VOCAB_SIZE))\n",
|
119 |
-
"\n",
|
120 |
-
"class CustomFlaxBartForConditionalGeneration(FlaxBartForConditionalGeneration):\n",
|
121 |
-
" module_class = CustomFlaxBartForConditionalGenerationModule"
|
122 |
-
]
|
123 |
-
},
|
124 |
-
{
|
125 |
-
"cell_type": "code",
|
126 |
-
"execution_count": null,
|
127 |
-
"id": "879320b7-eaa0-4dc9-bbf2-c81efc53301d",
|
128 |
-
"metadata": {},
|
129 |
-
"outputs": [],
|
130 |
-
"source": [
|
131 |
-
"import wandb\n",
|
132 |
-
"run = wandb.init()\n",
|
133 |
-
"artifact = run.use_artifact('wandb/hf-flax-dalle-mini/model-3h3x3565:latest', type='bart_model')\n",
|
134 |
-
"artifact_dir = artifact.download()"
|
135 |
-
]
|
136 |
-
},
|
137 |
-
{
|
138 |
-
"cell_type": "code",
|
139 |
-
"execution_count": null,
|
140 |
-
"id": "e8bcff33-e95b-4c01-b162-ee857a55c3e6",
|
141 |
-
"metadata": {},
|
142 |
-
"outputs": [],
|
143 |
-
"source": [
|
144 |
-
"# create our model\n",
|
145 |
-
"tokenizer = BartTokenizer.from_pretrained(BASE_MODEL)\n",
|
146 |
-
"model = CustomFlaxBartForConditionalGeneration.from_pretrained(artifact_dir)\n",
|
147 |
-
"model.config.force_bos_token_to_be_generated = False\n",
|
148 |
-
"model.config.forced_bos_token_id = None\n",
|
149 |
-
"model.config.forced_eos_token_id = None\n",
|
150 |
-
"\n",
|
151 |
-
"# we verify that the shape has not been modified\n",
|
152 |
-
"model.params['final_logits_bias'].shape"
|
153 |
-
]
|
154 |
-
},
|
155 |
-
{
|
156 |
-
"cell_type": "code",
|
157 |
-
"execution_count": null,
|
158 |
-
"id": "8d5e0f14-2502-470e-9553-daee6748601f",
|
159 |
-
"metadata": {},
|
160 |
-
"outputs": [],
|
161 |
-
"source": [
|
162 |
-
"vqgan = VQModel.from_pretrained(\"flax-community/vqgan_f16_16384\")"
|
163 |
-
]
|
164 |
-
},
|
165 |
-
{
|
166 |
-
"cell_type": "code",
|
167 |
-
"execution_count": null,
|
168 |
-
"id": "6cca395a-93c2-49bc-a3be-98287e4403d4",
|
169 |
-
"metadata": {},
|
170 |
-
"outputs": [],
|
171 |
-
"source": [
|
172 |
-
"def custom_to_pil(x):\n",
|
173 |
-
" x = np.clip(x, 0., 1.)\n",
|
174 |
-
" x = (255*x).astype(np.uint8)\n",
|
175 |
-
" x = Image.fromarray(x)\n",
|
176 |
-
" if not x.mode == \"RGB\":\n",
|
177 |
-
" x = x.convert(\"RGB\")\n",
|
178 |
-
" return x\n",
|
179 |
-
"\n",
|
180 |
-
"def generate(input, rng, params):\n",
|
181 |
-
" return model.generate(\n",
|
182 |
-
" **input,\n",
|
183 |
-
" max_length=257,\n",
|
184 |
-
" num_beams=1,\n",
|
185 |
-
" do_sample=True,\n",
|
186 |
-
" prng_key=rng,\n",
|
187 |
-
" eos_token_id=50000,\n",
|
188 |
-
" pad_token_id=50000,\n",
|
189 |
-
" params=params\n",
|
190 |
-
" )\n",
|
191 |
-
"\n",
|
192 |
-
"def get_images(indices, params):\n",
|
193 |
-
" return vqgan.decode_code(indices, params=params)\n",
|
194 |
-
"\n",
|
195 |
-
"\n",
|
196 |
-
"def plot_images(images):\n",
|
197 |
-
" fig = plt.figure(figsize=(40, 20))\n",
|
198 |
-
" columns = 4\n",
|
199 |
-
" rows = 2\n",
|
200 |
-
" plt.subplots_adjust(hspace=0, wspace=0)\n",
|
201 |
-
"\n",
|
202 |
-
" for i in range(1, columns*rows +1):\n",
|
203 |
-
" fig.add_subplot(rows, columns, i)\n",
|
204 |
-
" plt.imshow(images[i-1])\n",
|
205 |
-
" plt.gca().axes.get_yaxis().set_visible(False)\n",
|
206 |
-
" plt.show()\n",
|
207 |
-
" \n",
|
208 |
-
"def stack_reconstructions(images):\n",
|
209 |
-
" w, h = images[0].size[0], images[0].size[1]\n",
|
210 |
-
" img = Image.new(\"RGB\", (len(images)*w, h))\n",
|
211 |
-
" for i, img_ in enumerate(images):\n",
|
212 |
-
" img.paste(img_, (i*w,0))\n",
|
213 |
-
" return img"
|
214 |
-
]
|
215 |
-
},
|
216 |
-
{
|
217 |
-
"cell_type": "code",
|
218 |
-
"execution_count": null,
|
219 |
-
"id": "b1bec3d2-ef17-4feb-aa0d-b51ed2fdcd3e",
|
220 |
-
"metadata": {},
|
221 |
-
"outputs": [],
|
222 |
-
"source": [
|
223 |
-
"p_generate = jax.pmap(generate, \"batch\")\n",
|
224 |
-
"p_get_images = jax.pmap(get_images, \"batch\")"
|
225 |
-
]
|
226 |
-
},
|
227 |
-
{
|
228 |
-
"cell_type": "code",
|
229 |
-
"execution_count": null,
|
230 |
-
"id": "a539823a-a775-4d92-96a5-dc8b1eef69c5",
|
231 |
-
"metadata": {},
|
232 |
-
"outputs": [],
|
233 |
-
"source": [
|
234 |
-
"bart_params = replicate(model.params)\n",
|
235 |
-
"vqgan_params = replicate(vqgan.params)"
|
236 |
-
]
|
237 |
-
},
|
238 |
-
{
|
239 |
-
"cell_type": "code",
|
240 |
-
"execution_count": null,
|
241 |
-
"id": "e8b268d8-6992-422a-8373-95651474ae70",
|
242 |
-
"metadata": {},
|
243 |
-
"outputs": [],
|
244 |
-
"source": [
|
245 |
-
"prompts = [\n",
|
246 |
-
" \"man in blue jacket walking on pathway in between trees during daytime\",\n",
|
247 |
-
" 'white snow covered mountain under blue sky during daytime',\n",
|
248 |
-
" 'white snow covered mountain under blue sky during night',\n",
|
249 |
-
" \"orange tabby cat on persons hand\",\n",
|
250 |
-
" \"aerial view of beach during daytime\",\n",
|
251 |
-
" \"chess pieces on chess board\",\n",
|
252 |
-
" \"laptop on brown wooden table\",\n",
|
253 |
-
" \"white bus on road near high rise buildings\",\n",
|
254 |
-
"]\n",
|
255 |
-
"\n",
|
256 |
-
"\n",
|
257 |
-
"prompt = [prompts[1]] * jax.device_count()\n",
|
258 |
-
"inputs = tokenizer(prompt, return_tensors='jax', padding=\"max_length\", truncation=True, max_length=128).data\n",
|
259 |
-
"inputs = shard(inputs)"
|
260 |
-
]
|
261 |
-
},
|
262 |
-
{
|
263 |
-
"cell_type": "code",
|
264 |
-
"execution_count": null,
|
265 |
-
"id": "68638cfa-9a4d-4e6a-8630-91aefb627bbd",
|
266 |
-
"metadata": {},
|
267 |
-
"outputs": [],
|
268 |
-
"source": [
|
269 |
-
"%%time\n",
|
270 |
-
"for i in range(8):\n",
|
271 |
-
" key = random.randint(0, 1e7)\n",
|
272 |
-
" rng = jax.random.PRNGKey(key)\n",
|
273 |
-
" rngs = jax.random.split(rng, jax.local_device_count())\n",
|
274 |
-
" indices = p_generate(inputs, rngs, bart_params).sequences\n",
|
275 |
-
" indices = indices[:, :, 1:]\n",
|
276 |
-
"\n",
|
277 |
-
" images = p_get_images(indices, vqgan_params)\n",
|
278 |
-
" images = np.squeeze(np.asarray(images), 1)\n",
|
279 |
-
" imges = [custom_to_pil(image) for image in images]\n",
|
280 |
-
"\n",
|
281 |
-
" plt.figure(figsize=(40, 20))\n",
|
282 |
-
" plt.imshow(stack_reconstructions(imges))"
|
283 |
-
]
|
284 |
-
},
|
285 |
-
{
|
286 |
-
"cell_type": "markdown",
|
287 |
-
"id": "b6e1060f",
|
288 |
-
"metadata": {},
|
289 |
-
"source": [
|
290 |
-
"## CLIP Scoring"
|
291 |
-
]
|
292 |
-
},
|
293 |
-
{
|
294 |
-
"cell_type": "code",
|
295 |
-
"execution_count": null,
|
296 |
-
"id": "c68724bc",
|
297 |
-
"metadata": {},
|
298 |
-
"outputs": [],
|
299 |
-
"source": [
|
300 |
-
"from transformers import CLIPProcessor, FlaxCLIPModel"
|
301 |
-
]
|
302 |
-
},
|
303 |
-
{
|
304 |
-
"cell_type": "code",
|
305 |
-
"execution_count": null,
|
306 |
-
"id": "17158e5b",
|
307 |
-
"metadata": {},
|
308 |
-
"outputs": [],
|
309 |
-
"source": [
|
310 |
-
"clip = FlaxCLIPModel.from_pretrained(\"openai/clip-vit-base-patch32\")\n",
|
311 |
-
"processor = CLIPProcessor.from_pretrained(\"openai/clip-vit-base-patch32\")"
|
312 |
-
]
|
313 |
-
},
|
314 |
-
{
|
315 |
-
"cell_type": "code",
|
316 |
-
"execution_count": null,
|
317 |
-
"id": "f1b37b6d",
|
318 |
-
"metadata": {},
|
319 |
-
"outputs": [],
|
320 |
-
"source": [
|
321 |
-
"def hallucinate(prompt, num_images=64):\n",
|
322 |
-
" prompt = [prompt] * jax.device_count()\n",
|
323 |
-
" inputs = tokenizer(prompt, return_tensors='jax', padding=\"max_length\", truncation=True, max_length=128).data\n",
|
324 |
-
" inputs = shard(inputs)\n",
|
325 |
-
"\n",
|
326 |
-
" all_images = []\n",
|
327 |
-
" for i in range(num_images // jax.device_count()):\n",
|
328 |
-
" key = random.randint(0, 1e7)\n",
|
329 |
-
" rng = jax.random.PRNGKey(key)\n",
|
330 |
-
" rngs = jax.random.split(rng, jax.local_device_count())\n",
|
331 |
-
" indices = p_generate(inputs, rngs, bart_params).sequences\n",
|
332 |
-
" indices = indices[:, :, 1:]\n",
|
333 |
-
"\n",
|
334 |
-
" images = p_get_images(indices, vqgan_params)\n",
|
335 |
-
" images = np.squeeze(np.asarray(images), 1)\n",
|
336 |
-
" for image in images:\n",
|
337 |
-
" all_images.append(custom_to_pil(image))\n",
|
338 |
-
" return all_images"
|
339 |
-
]
|
340 |
-
},
|
341 |
-
{
|
342 |
-
"cell_type": "code",
|
343 |
-
"execution_count": null,
|
344 |
-
"id": "831c715f",
|
345 |
-
"metadata": {},
|
346 |
-
"outputs": [],
|
347 |
-
"source": [
|
348 |
-
"def clip_top_k(prompt, images, k=8):\n",
|
349 |
-
" inputs = processor(text=prompt, images=images, return_tensors=\"np\", padding=True)\n",
|
350 |
-
" outputs = clip(**inputs)\n",
|
351 |
-
" logits = outputs.logits_per_text\n",
|
352 |
-
" scores = np.array(logits[0]).argsort()[-k:][::-1]\n",
|
353 |
-
" return [images[score] for score in scores]"
|
354 |
-
]
|
355 |
-
},
|
356 |
-
{
|
357 |
-
"cell_type": "code",
|
358 |
-
"execution_count": null,
|
359 |
-
"id": "00605e13",
|
360 |
-
"metadata": {},
|
361 |
-
"outputs": [],
|
362 |
-
"source": [
|
363 |
-
"prompt = \"white snow covered mountain under blue sky during daytime\"\n",
|
364 |
-
"images = hallucinate(prompt)\n",
|
365 |
-
"selected = clip_top_k(prompt, images, k=8)\n",
|
366 |
-
"stack_reconstructions(selected)"
|
367 |
-
]
|
368 |
-
},
|
369 |
-
{
|
370 |
-
"cell_type": "code",
|
371 |
-
"execution_count": null,
|
372 |
-
"id": "cc745da2",
|
373 |
-
"metadata": {},
|
374 |
-
"outputs": [],
|
375 |
-
"source": [
|
376 |
-
"prompt = \"aerial view of beach at night\"\n",
|
377 |
-
"images = hallucinate(prompt)\n",
|
378 |
-
"selected = clip_top_k(prompt, images, k=8)\n",
|
379 |
-
"stack_reconstructions(selected)"
|
380 |
-
]
|
381 |
-
},
|
382 |
-
{
|
383 |
-
"cell_type": "code",
|
384 |
-
"execution_count": null,
|
385 |
-
"id": "c9cc0b1d",
|
386 |
-
"metadata": {},
|
387 |
-
"outputs": [],
|
388 |
-
"source": [
|
389 |
-
"prompt = \"an armchair in the shape of an avocado\"\n",
|
390 |
-
"images = hallucinate(prompt)\n",
|
391 |
-
"selected = clip_top_k(prompt, images, k=8)\n",
|
392 |
-
"stack_reconstructions(selected)"
|
393 |
-
]
|
394 |
-
},
|
395 |
-
{
|
396 |
-
"cell_type": "code",
|
397 |
-
"execution_count": null,
|
398 |
-
"id": "574e9433",
|
399 |
-
"metadata": {},
|
400 |
-
"outputs": [],
|
401 |
-
"source": [
|
402 |
-
"prompt = \"young woman riding her bike into a forest\"\n",
|
403 |
-
"images = hallucinate(prompt)\n",
|
404 |
-
"selected = clip_top_k(prompt, images, k=8)\n",
|
405 |
-
"stack_reconstructions(selected)"
|
406 |
-
]
|
407 |
-
},
|
408 |
-
{
|
409 |
-
"cell_type": "markdown",
|
410 |
-
"id": "4762c91e",
|
411 |
-
"metadata": {},
|
412 |
-
"source": [
|
413 |
-
"`Forest` seems to dominate. Interesting cubist interpretation in the fourth image."
|
414 |
-
]
|
415 |
-
},
|
416 |
-
{
|
417 |
-
"cell_type": "code",
|
418 |
-
"execution_count": null,
|
419 |
-
"id": "af30608a",
|
420 |
-
"metadata": {},
|
421 |
-
"outputs": [],
|
422 |
-
"source": []
|
423 |
-
}
|
424 |
-
],
|
425 |
-
"metadata": {
|
426 |
-
"kernelspec": {
|
427 |
-
"display_name": "Python 3 (ipykernel)",
|
428 |
-
"language": "python",
|
429 |
-
"name": "python3"
|
430 |
-
},
|
431 |
-
"language_info": {
|
432 |
-
"codemirror_mode": {
|
433 |
-
"name": "ipython",
|
434 |
-
"version": 3
|
435 |
-
},
|
436 |
-
"file_extension": ".py",
|
437 |
-
"mimetype": "text/x-python",
|
438 |
-
"name": "python",
|
439 |
-
"nbconvert_exporter": "python",
|
440 |
-
"pygments_lexer": "ipython3",
|
441 |
-
"version": "3.8.10"
|
442 |
-
}
|
443 |
-
},
|
444 |
-
"nbformat": 4,
|
445 |
-
"nbformat_minor": 5
|
446 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dev/notebooks/model/data-pipeline.ipynb
DELETED
@@ -1,385 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"cells": [
|
3 |
-
{
|
4 |
-
"cell_type": "markdown",
|
5 |
-
"id": "bf8fb38a",
|
6 |
-
"metadata": {},
|
7 |
-
"source": [
|
8 |
-
"# Data Pipeline"
|
9 |
-
]
|
10 |
-
},
|
11 |
-
{
|
12 |
-
"cell_type": "code",
|
13 |
-
"execution_count": 1,
|
14 |
-
"id": "9b83dcb9",
|
15 |
-
"metadata": {},
|
16 |
-
"outputs": [],
|
17 |
-
"source": [
|
18 |
-
"from dataclasses import dataclass, field\n",
|
19 |
-
"from pathlib import Path\n",
|
20 |
-
"\n",
|
21 |
-
"import datasets\n",
|
22 |
-
"from datasets import Dataset, load_dataset\n",
|
23 |
-
"import numpy as np\n",
|
24 |
-
"\n",
|
25 |
-
"from transformers import BartTokenizer\n",
|
26 |
-
"\n",
|
27 |
-
"from tqdm import tqdm\n",
|
28 |
-
"\n",
|
29 |
-
"import jax\n",
|
30 |
-
"import jax.numpy as jnp\n",
|
31 |
-
"\n",
|
32 |
-
"from flax.training.common_utils import shard"
|
33 |
-
]
|
34 |
-
},
|
35 |
-
{
|
36 |
-
"cell_type": "markdown",
|
37 |
-
"id": "a661a89e",
|
38 |
-
"metadata": {},
|
39 |
-
"source": [
|
40 |
-
"File containing image paths, captions and VQGAN-encoded indices."
|
41 |
-
]
|
42 |
-
},
|
43 |
-
{
|
44 |
-
"cell_type": "code",
|
45 |
-
"execution_count": 2,
|
46 |
-
"id": "0e84e889",
|
47 |
-
"metadata": {},
|
48 |
-
"outputs": [],
|
49 |
-
"source": [
|
50 |
-
"datafile = '/data/CC12M/images-encoded-10000.tsv' # 9999 encoded images from CC12M"
|
51 |
-
]
|
52 |
-
},
|
53 |
-
{
|
54 |
-
"cell_type": "markdown",
|
55 |
-
"id": "7fdc640b",
|
56 |
-
"metadata": {},
|
57 |
-
"source": [
|
58 |
-
"TODO: generate train/test splits if necessary."
|
59 |
-
]
|
60 |
-
},
|
61 |
-
{
|
62 |
-
"cell_type": "code",
|
63 |
-
"execution_count": 3,
|
64 |
-
"id": "cc6789b4",
|
65 |
-
"metadata": {},
|
66 |
-
"outputs": [
|
67 |
-
{
|
68 |
-
"name": "stderr",
|
69 |
-
"output_type": "stream",
|
70 |
-
"text": [
|
71 |
-
"Using custom data configuration default-91833df78e844785\n",
|
72 |
-
"Reusing dataset csv (/home/pedro/.cache/huggingface/datasets/csv/default-91833df78e844785/0.0.0/e138af468cb14e747fb46a19c787ffcfa5170c821476d20d5304287ce12bbc23)\n"
|
73 |
-
]
|
74 |
-
}
|
75 |
-
],
|
76 |
-
"source": [
|
77 |
-
"dataset = load_dataset('csv', delimiter='\\t', data_files=[datafile])"
|
78 |
-
]
|
79 |
-
},
|
80 |
-
{
|
81 |
-
"cell_type": "code",
|
82 |
-
"execution_count": 4,
|
83 |
-
"id": "f3ed4919",
|
84 |
-
"metadata": {},
|
85 |
-
"outputs": [
|
86 |
-
{
|
87 |
-
"data": {
|
88 |
-
"text/plain": [
|
89 |
-
"DatasetDict({\n",
|
90 |
-
" train: Dataset({\n",
|
91 |
-
" features: ['image_file', 'caption', 'encoding'],\n",
|
92 |
-
" num_rows: 9999\n",
|
93 |
-
" })\n",
|
94 |
-
"})"
|
95 |
-
]
|
96 |
-
},
|
97 |
-
"execution_count": 4,
|
98 |
-
"metadata": {},
|
99 |
-
"output_type": "execute_result"
|
100 |
-
}
|
101 |
-
],
|
102 |
-
"source": [
|
103 |
-
"dataset"
|
104 |
-
]
|
105 |
-
},
|
106 |
-
{
|
107 |
-
"cell_type": "code",
|
108 |
-
"execution_count": 5,
|
109 |
-
"id": "a70c7354",
|
110 |
-
"metadata": {},
|
111 |
-
"outputs": [
|
112 |
-
{
|
113 |
-
"data": {
|
114 |
-
"text/plain": [
|
115 |
-
"Dataset({\n",
|
116 |
-
" features: ['image_file', 'caption', 'encoding'],\n",
|
117 |
-
" num_rows: 9999\n",
|
118 |
-
"})"
|
119 |
-
]
|
120 |
-
},
|
121 |
-
"execution_count": 5,
|
122 |
-
"metadata": {},
|
123 |
-
"output_type": "execute_result"
|
124 |
-
}
|
125 |
-
],
|
126 |
-
"source": [
|
127 |
-
"dataset = dataset[\"train\"]\n",
|
128 |
-
"dataset"
|
129 |
-
]
|
130 |
-
},
|
131 |
-
{
|
132 |
-
"cell_type": "markdown",
|
133 |
-
"id": "a73454cf",
|
134 |
-
"metadata": {},
|
135 |
-
"source": [
|
136 |
-
"We don't really need the `image_file` field for training. We'll drop it during pre-processing because we won't be able to numericalize it to a `jnp.array`, which would be required in JAX."
|
137 |
-
]
|
138 |
-
},
|
139 |
-
{
|
140 |
-
"cell_type": "markdown",
|
141 |
-
"id": "7c0fa992",
|
142 |
-
"metadata": {},
|
143 |
-
"source": [
|
144 |
-
"## Preprocessing"
|
145 |
-
]
|
146 |
-
},
|
147 |
-
{
|
148 |
-
"cell_type": "markdown",
|
149 |
-
"id": "a0e36582",
|
150 |
-
"metadata": {},
|
151 |
-
"source": [
|
152 |
-
"The `encoding` field contains a string representation of the encoded indices. We'll convert them to numbers. We also need to tokenize the captions."
|
153 |
-
]
|
154 |
-
},
|
155 |
-
{
|
156 |
-
"cell_type": "code",
|
157 |
-
"execution_count": 6,
|
158 |
-
"id": "d46f6ac5",
|
159 |
-
"metadata": {},
|
160 |
-
"outputs": [],
|
161 |
-
"source": [
|
162 |
-
"# Setting padding=\"max_length\" as we need fixed length inputs for jitted functions\n",
|
163 |
-
"max_length = 256 # Read from data_args.max_source_length\n",
|
164 |
-
"tokenizer = BartTokenizer.from_pretrained('facebook/bart-large-cnn')\n",
|
165 |
-
"image_bos = 16384 # Max token is 16383 in our VQGAN configuration"
|
166 |
-
]
|
167 |
-
},
|
168 |
-
{
|
169 |
-
"cell_type": "code",
|
170 |
-
"execution_count": 7,
|
171 |
-
"id": "4cac6643",
|
172 |
-
"metadata": {},
|
173 |
-
"outputs": [],
|
174 |
-
"source": [
|
175 |
-
"def preprocess_function(examples):\n",
|
176 |
-
" inputs = examples[\"caption\"]\n",
|
177 |
-
"# inputs = [prefix + inp for inp in inputs] # Do we need this?\n",
|
178 |
-
" model_inputs = tokenizer(\n",
|
179 |
-
" inputs, max_length=max_length, padding=\"max_length\", truncation=True, return_tensors=\"np\"\n",
|
180 |
-
" )\n",
|
181 |
-
"\n",
|
182 |
-
" model_inputs[\"labels\"] = [[image_bos] + eval(indices) for indices in examples['encoding']]\n",
|
183 |
-
"\n",
|
184 |
-
" return model_inputs"
|
185 |
-
]
|
186 |
-
},
|
187 |
-
{
|
188 |
-
"cell_type": "code",
|
189 |
-
"execution_count": 8,
|
190 |
-
"id": "e6a4cb91",
|
191 |
-
"metadata": {},
|
192 |
-
"outputs": [],
|
193 |
-
"source": [
|
194 |
-
"num_workers = 48 # We have 96 processors in the TPU\n",
|
195 |
-
"column_names = dataset.column_names\n",
|
196 |
-
"input_dataset = dataset.map(preprocess_function,\n",
|
197 |
-
" remove_columns=column_names,\n",
|
198 |
-
" batched=True,\n",
|
199 |
-
" num_proc=48\n",
|
200 |
-
")"
|
201 |
-
]
|
202 |
-
},
|
203 |
-
{
|
204 |
-
"cell_type": "code",
|
205 |
-
"execution_count": 9,
|
206 |
-
"id": "a9b1b467",
|
207 |
-
"metadata": {},
|
208 |
-
"outputs": [],
|
209 |
-
"source": [
|
210 |
-
"def data_loader(rng: jax.random.PRNGKey, dataset: Dataset, batch_size: int, shuffle: bool = False):\n",
|
211 |
-
" \"\"\"\n",
|
212 |
-
" Returns batches of size `batch_size` from truncated `dataset`, sharded over all local devices.\n",
|
213 |
-
" Shuffle batches if `shuffle` is `True`.\n",
|
214 |
-
" \"\"\"\n",
|
215 |
-
" steps_per_epoch = len(dataset) // batch_size\n",
|
216 |
-
"\n",
|
217 |
-
" if shuffle:\n",
|
218 |
-
" batch_idx = jax.random.permutation(rng, len(dataset))\n",
|
219 |
-
" else:\n",
|
220 |
-
" batch_idx = jnp.arange(len(dataset))\n",
|
221 |
-
"\n",
|
222 |
-
" batch_idx = batch_idx[: steps_per_epoch * batch_size] # Skip incomplete batch.\n",
|
223 |
-
" batch_idx = batch_idx.reshape((steps_per_epoch, batch_size))\n",
|
224 |
-
"\n",
|
225 |
-
" for idx in batch_idx:\n",
|
226 |
-
" batch = dataset[idx] \n",
|
227 |
-
" batch = {k: jnp.array(v) for k, v in batch.items()}\n",
|
228 |
-
" batch = shard(batch)\n",
|
229 |
-
" yield batch"
|
230 |
-
]
|
231 |
-
},
|
232 |
-
{
|
233 |
-
"cell_type": "code",
|
234 |
-
"execution_count": 10,
|
235 |
-
"id": "0a628505",
|
236 |
-
"metadata": {},
|
237 |
-
"outputs": [
|
238 |
-
{
|
239 |
-
"name": "stderr",
|
240 |
-
"output_type": "stream",
|
241 |
-
"text": [
|
242 |
-
"INFO:absl:Starting the local TPU driver.\n",
|
243 |
-
"INFO:absl:Unable to initialize backend 'tpu_driver': Not found: Unable to find driver in registry given worker: local://\n",
|
244 |
-
"INFO:absl:Unable to initialize backend 'gpu': Not found: Could not find registered platform with name: \"cuda\". Available platform names are: Host TPU Interpreter\n"
|
245 |
-
]
|
246 |
-
}
|
247 |
-
],
|
248 |
-
"source": [
|
249 |
-
"rng = jax.random.PRNGKey(23) # Use training_args.seed\n",
|
250 |
-
"batch_size = 64 # Per device\n",
|
251 |
-
"super_batch_size = batch_size * jax.device_count()"
|
252 |
-
]
|
253 |
-
},
|
254 |
-
{
|
255 |
-
"cell_type": "code",
|
256 |
-
"execution_count": 11,
|
257 |
-
"id": "b3a5ce7d",
|
258 |
-
"metadata": {},
|
259 |
-
"outputs": [],
|
260 |
-
"source": [
|
261 |
-
"loader = data_loader(rng, input_dataset, batch_size=super_batch_size)"
|
262 |
-
]
|
263 |
-
},
|
264 |
-
{
|
265 |
-
"cell_type": "code",
|
266 |
-
"execution_count": 12,
|
267 |
-
"id": "67aa8f9c",
|
268 |
-
"metadata": {},
|
269 |
-
"outputs": [],
|
270 |
-
"source": [
|
271 |
-
"superbatch = next(iter(loader))"
|
272 |
-
]
|
273 |
-
},
|
274 |
-
{
|
275 |
-
"cell_type": "code",
|
276 |
-
"execution_count": 13,
|
277 |
-
"id": "7cd99402",
|
278 |
-
"metadata": {},
|
279 |
-
"outputs": [
|
280 |
-
{
|
281 |
-
"data": {
|
282 |
-
"text/plain": [
|
283 |
-
"dict_keys(['attention_mask', 'input_ids', 'labels'])"
|
284 |
-
]
|
285 |
-
},
|
286 |
-
"execution_count": 13,
|
287 |
-
"metadata": {},
|
288 |
-
"output_type": "execute_result"
|
289 |
-
}
|
290 |
-
],
|
291 |
-
"source": [
|
292 |
-
"superbatch.keys()"
|
293 |
-
]
|
294 |
-
},
|
295 |
-
{
|
296 |
-
"cell_type": "code",
|
297 |
-
"execution_count": 14,
|
298 |
-
"id": "652a4a9e",
|
299 |
-
"metadata": {},
|
300 |
-
"outputs": [
|
301 |
-
{
|
302 |
-
"data": {
|
303 |
-
"text/plain": [
|
304 |
-
"8"
|
305 |
-
]
|
306 |
-
},
|
307 |
-
"execution_count": 14,
|
308 |
-
"metadata": {},
|
309 |
-
"output_type": "execute_result"
|
310 |
-
}
|
311 |
-
],
|
312 |
-
"source": [
|
313 |
-
"len(superbatch[\"labels\"])"
|
314 |
-
]
|
315 |
-
},
|
316 |
-
{
|
317 |
-
"cell_type": "code",
|
318 |
-
"execution_count": 15,
|
319 |
-
"id": "de7de4e8",
|
320 |
-
"metadata": {},
|
321 |
-
"outputs": [
|
322 |
-
{
|
323 |
-
"data": {
|
324 |
-
"text/plain": [
|
325 |
-
"(8, 64, 257)"
|
326 |
-
]
|
327 |
-
},
|
328 |
-
"execution_count": 15,
|
329 |
-
"metadata": {},
|
330 |
-
"output_type": "execute_result"
|
331 |
-
}
|
332 |
-
],
|
333 |
-
"source": [
|
334 |
-
"superbatch[\"labels\"].shape"
|
335 |
-
]
|
336 |
-
},
|
337 |
-
{
|
338 |
-
"cell_type": "markdown",
|
339 |
-
"id": "6800153b",
|
340 |
-
"metadata": {},
|
341 |
-
"source": [
|
342 |
-
"Any image sequence should begin with `image_bos`:"
|
343 |
-
]
|
344 |
-
},
|
345 |
-
{
|
346 |
-
"cell_type": "code",
|
347 |
-
"execution_count": 16,
|
348 |
-
"id": "cfe23a71",
|
349 |
-
"metadata": {},
|
350 |
-
"outputs": [],
|
351 |
-
"source": [
|
352 |
-
"assert superbatch[\"labels\"][1][5][0].item() == image_bos"
|
353 |
-
]
|
354 |
-
},
|
355 |
-
{
|
356 |
-
"cell_type": "code",
|
357 |
-
"execution_count": null,
|
358 |
-
"id": "0fb899b4",
|
359 |
-
"metadata": {},
|
360 |
-
"outputs": [],
|
361 |
-
"source": []
|
362 |
-
}
|
363 |
-
],
|
364 |
-
"metadata": {
|
365 |
-
"kernelspec": {
|
366 |
-
"display_name": "Python 3 (ipykernel)",
|
367 |
-
"language": "python",
|
368 |
-
"name": "python3"
|
369 |
-
},
|
370 |
-
"language_info": {
|
371 |
-
"codemirror_mode": {
|
372 |
-
"name": "ipython",
|
373 |
-
"version": 3
|
374 |
-
},
|
375 |
-
"file_extension": ".py",
|
376 |
-
"mimetype": "text/x-python",
|
377 |
-
"name": "python",
|
378 |
-
"nbconvert_exporter": "python",
|
379 |
-
"pygments_lexer": "ipython3",
|
380 |
-
"version": "3.8.10"
|
381 |
-
}
|
382 |
-
},
|
383 |
-
"nbformat": 4,
|
384 |
-
"nbformat_minor": 5
|
385 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dev/predictions/wandb-examples-from-backend.py
DELETED
@@ -1,52 +0,0 @@
|
|
1 |
-
#!/usr/bin/env python
|
2 |
-
# coding: utf-8
|
3 |
-
|
4 |
-
from PIL import Image, ImageDraw, ImageFont
|
5 |
-
import wandb
|
6 |
-
import os
|
7 |
-
|
8 |
-
from dalle_mini.backend import ServiceError, get_images_from_backend
|
9 |
-
from dalle_mini.helpers import captioned_strip
|
10 |
-
|
11 |
-
os.environ["WANDB_SILENT"] = "true"
|
12 |
-
os.environ["WANDB_CONSOLE"] = "off"
|
13 |
-
|
14 |
-
# set id to None so our latest images don't get overwritten
|
15 |
-
id = None
|
16 |
-
run = wandb.init(id=id,
|
17 |
-
entity='wandb',
|
18 |
-
project="hf-flax-dalle-mini",
|
19 |
-
job_type="predictions",
|
20 |
-
resume="allow"
|
21 |
-
)
|
22 |
-
|
23 |
-
def log_to_wandb(prompts):
|
24 |
-
try:
|
25 |
-
backend_url = os.environ["BACKEND_SERVER"]
|
26 |
-
|
27 |
-
strips = []
|
28 |
-
for prompt in prompts:
|
29 |
-
print(f"Getting selections for: {prompt}")
|
30 |
-
selected = get_images_from_backend(prompt, backend_url)
|
31 |
-
strip = captioned_strip(selected, prompt)
|
32 |
-
strips.append(wandb.Image(strip))
|
33 |
-
wandb.log({"images": strips})
|
34 |
-
except ServiceError as error:
|
35 |
-
print(f"Service unavailable, status: {error.status_code}")
|
36 |
-
except KeyError:
|
37 |
-
print("Error: BACKEND_SERVER unset")
|
38 |
-
|
39 |
-
prompts = [
|
40 |
-
"white snow covered mountain under blue sky during daytime",
|
41 |
-
"aerial view of beach during daytime",
|
42 |
-
"aerial view of beach at night",
|
43 |
-
"an armchair in the shape of an avocado",
|
44 |
-
"a logo of an avocado armchair playing music",
|
45 |
-
"young woman riding her bike trough a forest",
|
46 |
-
"rice fields by the mediterranean coast",
|
47 |
-
"white houses on the hill of a greek coastline",
|
48 |
-
"illustration of a shark with a baby shark",
|
49 |
-
"painting of an oniric forest glade surrounded by tall trees",
|
50 |
-
]
|
51 |
-
|
52 |
-
log_to_wandb(prompts)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dev/{notebooks/vqgan → vqgan}/JAX_VQGAN_f16_16384_Reconstruction.ipynb
RENAMED
File without changes
|