Spaces:
Running
Running
Merge pull request #26 from tmabraham/generation-training-demo
Browse filesdemo for generation, including during training from wandb artifact
- demo/demo_notebook.ipynb +495 -0
demo/demo_notebook.ipynb
ADDED
@@ -0,0 +1,495 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {
|
6 |
+
"id": "ewer-Q-0w2xA"
|
7 |
+
},
|
8 |
+
"source": [
|
9 |
+
"# Installation"
|
10 |
+
]
|
11 |
+
},
|
12 |
+
{
|
13 |
+
"cell_type": "code",
|
14 |
+
"execution_count": 1,
|
15 |
+
"metadata": {
|
16 |
+
"colab": {
|
17 |
+
"base_uri": "https://localhost:8080/"
|
18 |
+
},
|
19 |
+
"id": "NpsF9ipLLl2s",
|
20 |
+
"outputId": "10bf54aa-b89d-4e42-9777-bc97b00a5f32"
|
21 |
+
},
|
22 |
+
"outputs": [],
|
23 |
+
"source": [
|
24 |
+
"#!pip install git+https://github.com/huggingface/transformers/\n",
|
25 |
+
"#!pip install git+https://github.com/google/flax"
|
26 |
+
]
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"cell_type": "code",
|
30 |
+
"execution_count": 2,
|
31 |
+
"metadata": {
|
32 |
+
"id": "M1wVkrpjU6zO"
|
33 |
+
},
|
34 |
+
"outputs": [],
|
35 |
+
"source": [
|
36 |
+
"%load_ext autoreload\n",
|
37 |
+
"%autoreload 2"
|
38 |
+
]
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"cell_type": "code",
|
42 |
+
"execution_count": 3,
|
43 |
+
"metadata": {},
|
44 |
+
"outputs": [
|
45 |
+
{
|
46 |
+
"name": "stdout",
|
47 |
+
"output_type": "stream",
|
48 |
+
"text": [
|
49 |
+
"/home/tmabraham/vqgan-jax\n"
|
50 |
+
]
|
51 |
+
}
|
52 |
+
],
|
53 |
+
"source": [
|
54 |
+
"%cd ../../vqgan-jax"
|
55 |
+
]
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"cell_type": "markdown",
|
59 |
+
"metadata": {
|
60 |
+
"id": "t47CH1H_IOT8"
|
61 |
+
},
|
62 |
+
"source": [
|
63 |
+
"# Custom BART Model"
|
64 |
+
]
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"cell_type": "code",
|
68 |
+
"execution_count": 4,
|
69 |
+
"metadata": {
|
70 |
+
"id": "9jQnM6S2vCpn"
|
71 |
+
},
|
72 |
+
"outputs": [],
|
73 |
+
"source": [
|
74 |
+
"# TODO: set those args in a config file\n",
|
75 |
+
"OUTPUT_VOCAB_SIZE = 16384 + 1 # encoded image token space + 1 for bos\n",
|
76 |
+
"OUTPUT_LENGTH = 256 + 1 # number of encoded tokens + 1 for bos\n",
|
77 |
+
"BOS_TOKEN_ID = 16384\n",
|
78 |
+
"BASE_MODEL = 'facebook/bart-large'"
|
79 |
+
]
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"cell_type": "code",
|
83 |
+
"execution_count": 5,
|
84 |
+
"metadata": {
|
85 |
+
"id": "_eEaJVxAKpV5"
|
86 |
+
},
|
87 |
+
"outputs": [],
|
88 |
+
"source": [
|
89 |
+
"import jax\n",
|
90 |
+
"import flax.linen as nn\n",
|
91 |
+
"\n",
|
92 |
+
"from transformers.models.bart.modeling_flax_bart import *\n",
|
93 |
+
"from transformers import BartTokenizer, FlaxBartForConditionalGeneration\n",
|
94 |
+
"\n",
|
95 |
+
"class CustomFlaxBartModule(FlaxBartModule):\n",
|
96 |
+
" def setup(self):\n",
|
97 |
+
" # we keep shared to easily load pre-trained weights\n",
|
98 |
+
" self.shared = nn.Embed(\n",
|
99 |
+
" self.config.vocab_size,\n",
|
100 |
+
" self.config.d_model,\n",
|
101 |
+
" embedding_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),\n",
|
102 |
+
" dtype=self.dtype,\n",
|
103 |
+
" )\n",
|
104 |
+
" # a separate embedding is used for the decoder\n",
|
105 |
+
" self.decoder_embed = nn.Embed(\n",
|
106 |
+
" OUTPUT_VOCAB_SIZE,\n",
|
107 |
+
" self.config.d_model,\n",
|
108 |
+
" embedding_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),\n",
|
109 |
+
" dtype=self.dtype,\n",
|
110 |
+
" )\n",
|
111 |
+
" self.encoder = FlaxBartEncoder(self.config, dtype=self.dtype, embed_tokens=self.shared)\n",
|
112 |
+
"\n",
|
113 |
+
" # the decoder has a different config\n",
|
114 |
+
" decoder_config = BartConfig(self.config.to_dict())\n",
|
115 |
+
" decoder_config.max_position_embeddings = OUTPUT_LENGTH\n",
|
116 |
+
" decoder_config.vocab_size = OUTPUT_VOCAB_SIZE\n",
|
117 |
+
" self.decoder = FlaxBartDecoder(decoder_config, dtype=self.dtype, embed_tokens=self.decoder_embed)\n",
|
118 |
+
"\n",
|
119 |
+
"class CustomFlaxBartForConditionalGenerationModule(FlaxBartForConditionalGenerationModule):\n",
|
120 |
+
" def setup(self):\n",
|
121 |
+
" self.model = CustomFlaxBartModule(config=self.config, dtype=self.dtype)\n",
|
122 |
+
" self.lm_head = nn.Dense(\n",
|
123 |
+
" OUTPUT_VOCAB_SIZE,\n",
|
124 |
+
" use_bias=False,\n",
|
125 |
+
" dtype=self.dtype,\n",
|
126 |
+
" kernel_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),\n",
|
127 |
+
" )\n",
|
128 |
+
" self.final_logits_bias = self.param(\"final_logits_bias\", self.bias_init, (1, OUTPUT_VOCAB_SIZE))\n",
|
129 |
+
"\n",
|
130 |
+
"class CustomFlaxBartForConditionalGeneration(FlaxBartForConditionalGeneration):\n",
|
131 |
+
" module_class = CustomFlaxBartForConditionalGenerationModule"
|
132 |
+
]
|
133 |
+
},
|
134 |
+
{
|
135 |
+
"cell_type": "code",
|
136 |
+
"execution_count": 6,
|
137 |
+
"metadata": {
|
138 |
+
"scrolled": true
|
139 |
+
},
|
140 |
+
"outputs": [
|
141 |
+
{
|
142 |
+
"name": "stderr",
|
143 |
+
"output_type": "stream",
|
144 |
+
"text": [
|
145 |
+
"\u001b[34m\u001b[1mwandb\u001b[0m: Currently logged in as: \u001b[33mtmabraham\u001b[0m (use `wandb login --relogin` to force relogin)\n"
|
146 |
+
]
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"data": {
|
150 |
+
"text/html": [
|
151 |
+
"\n",
|
152 |
+
" Tracking run with wandb version 0.10.33<br/>\n",
|
153 |
+
" Syncing run <strong style=\"color:#cdcd00\">serene-resonance-1</strong> to <a href=\"https://wandb.ai\" target=\"_blank\">Weights & Biases</a> <a href=\"https://docs.wandb.com/integrations/jupyter.html\" target=\"_blank\">(Documentation)</a>.<br/>\n",
|
154 |
+
" Project page: <a href=\"https://wandb.ai/tmabraham/vqgan-jax\" target=\"_blank\">https://wandb.ai/tmabraham/vqgan-jax</a><br/>\n",
|
155 |
+
" Run page: <a href=\"https://wandb.ai/tmabraham/vqgan-jax/runs/1cm35ims\" target=\"_blank\">https://wandb.ai/tmabraham/vqgan-jax/runs/1cm35ims</a><br/>\n",
|
156 |
+
" Run data is saved locally in <code>/home/tmabraham/vqgan-jax/wandb/run-20210715_030616-1cm35ims</code><br/><br/>\n",
|
157 |
+
" "
|
158 |
+
],
|
159 |
+
"text/plain": [
|
160 |
+
"<IPython.core.display.HTML object>"
|
161 |
+
]
|
162 |
+
},
|
163 |
+
"metadata": {},
|
164 |
+
"output_type": "display_data"
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"name": "stderr",
|
168 |
+
"output_type": "stream",
|
169 |
+
"text": [
|
170 |
+
"\u001b[34m\u001b[1mwandb\u001b[0m: Downloading large artifact model-1ef8yxby:v1, 1674.97MB. 2 files... Done. 0:0:0\n"
|
171 |
+
]
|
172 |
+
}
|
173 |
+
],
|
174 |
+
"source": [
|
175 |
+
"import wandb\n",
|
176 |
+
"run = wandb.init()\n",
|
177 |
+
"artifact = run.use_artifact('wandb/hf-flax-dalle-mini/model-1ef8yxby:v1', type='bart_model')\n",
|
178 |
+
"artifact_dir = artifact.download()"
|
179 |
+
]
|
180 |
+
},
|
181 |
+
{
|
182 |
+
"cell_type": "code",
|
183 |
+
"execution_count": 7,
|
184 |
+
"metadata": {
|
185 |
+
"id": "_6-XKK40oEfP",
|
186 |
+
"scrolled": true
|
187 |
+
},
|
188 |
+
"outputs": [
|
189 |
+
{
|
190 |
+
"name": "stderr",
|
191 |
+
"output_type": "stream",
|
192 |
+
"text": [
|
193 |
+
"/home/tmabraham/dalle-mini/src/transformers/src/transformers/models/bart/configuration_bart.py:180: UserWarning: Please make sure the config includes `forced_bos_token_id=16384` in future versions.The config can simply be saved and uploaded again to be fixed.\n",
|
194 |
+
" warnings.warn(\n",
|
195 |
+
"INFO:absl:Starting the local TPU driver.\n",
|
196 |
+
"INFO:absl:Unable to initialize backend 'tpu_driver': Not found: Unable to find driver in registry given worker: local://\n",
|
197 |
+
"INFO:absl:Unable to initialize backend 'gpu': Not found: Could not find registered platform with name: \"cuda\". Available platform names are: TPU Interpreter Host\n"
|
198 |
+
]
|
199 |
+
}
|
200 |
+
],
|
201 |
+
"source": [
|
202 |
+
"# create our model and initialize it randomly\n",
|
203 |
+
"model = CustomFlaxBartForConditionalGeneration.from_pretrained(artifact_dir)"
|
204 |
+
]
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"cell_type": "code",
|
208 |
+
"execution_count": 8,
|
209 |
+
"metadata": {
|
210 |
+
"colab": {
|
211 |
+
"base_uri": "https://localhost:8080/"
|
212 |
+
},
|
213 |
+
"id": "Jz032w73nHEf",
|
214 |
+
"outputId": "994d8e85-bff7-480b-8b69-f69dedc15c49"
|
215 |
+
},
|
216 |
+
"outputs": [
|
217 |
+
{
|
218 |
+
"data": {
|
219 |
+
"text/plain": [
|
220 |
+
"(1, 16385)"
|
221 |
+
]
|
222 |
+
},
|
223 |
+
"execution_count": 8,
|
224 |
+
"metadata": {},
|
225 |
+
"output_type": "execute_result"
|
226 |
+
}
|
227 |
+
],
|
228 |
+
"source": [
|
229 |
+
"# we verify that the shape has not been modified\n",
|
230 |
+
"model.params['final_logits_bias'].shape"
|
231 |
+
]
|
232 |
+
},
|
233 |
+
{
|
234 |
+
"cell_type": "markdown",
|
235 |
+
"metadata": {
|
236 |
+
"id": "zLl24Ez5t7x1"
|
237 |
+
},
|
238 |
+
"source": [
|
239 |
+
"## Inference"
|
240 |
+
]
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"cell_type": "code",
|
244 |
+
"execution_count": 9,
|
245 |
+
"metadata": {
|
246 |
+
"id": "XLLA2NK3uDQr"
|
247 |
+
},
|
248 |
+
"outputs": [],
|
249 |
+
"source": [
|
250 |
+
"tokenizer = BartTokenizer.from_pretrained(BASE_MODEL)"
|
251 |
+
]
|
252 |
+
},
|
253 |
+
{
|
254 |
+
"cell_type": "code",
|
255 |
+
"execution_count": 10,
|
256 |
+
"metadata": {
|
257 |
+
"id": "P32mJJSbrU1F"
|
258 |
+
},
|
259 |
+
"outputs": [],
|
260 |
+
"source": [
|
261 |
+
"input_ids_test = tokenizer.encode('I enjoy walking with my cute dog', return_tensors='jax')"
|
262 |
+
]
|
263 |
+
},
|
264 |
+
{
|
265 |
+
"cell_type": "code",
|
266 |
+
"execution_count": 11,
|
267 |
+
"metadata": {},
|
268 |
+
"outputs": [
|
269 |
+
{
|
270 |
+
"data": {
|
271 |
+
"text/plain": [
|
272 |
+
"DeviceArray([[ 0, 100, 2254, 3051, 19, 127, 11962, 2335,\n",
|
273 |
+
" 2]], dtype=int32)"
|
274 |
+
]
|
275 |
+
},
|
276 |
+
"execution_count": 11,
|
277 |
+
"metadata": {},
|
278 |
+
"output_type": "execute_result"
|
279 |
+
}
|
280 |
+
],
|
281 |
+
"source": [
|
282 |
+
"input_ids_test"
|
283 |
+
]
|
284 |
+
},
|
285 |
+
{
|
286 |
+
"cell_type": "code",
|
287 |
+
"execution_count": 12,
|
288 |
+
"metadata": {
|
289 |
+
"id": "C7cHbIHruELT"
|
290 |
+
},
|
291 |
+
"outputs": [],
|
292 |
+
"source": [
|
293 |
+
"greedy_output = model.generate(input_ids_test, max_length=257)"
|
294 |
+
]
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"cell_type": "code",
|
298 |
+
"execution_count": 13,
|
299 |
+
"metadata": {
|
300 |
+
"colab": {
|
301 |
+
"base_uri": "https://localhost:8080/"
|
302 |
+
},
|
303 |
+
"id": "jYugh9cOuwc9",
|
304 |
+
"outputId": "19c3a2ee-e7bc-4f1f-9c86-06bd7337b537"
|
305 |
+
},
|
306 |
+
"outputs": [
|
307 |
+
{
|
308 |
+
"data": {
|
309 |
+
"text/plain": [
|
310 |
+
"DeviceArray([[16384, 16384, 10042, 10042, 10042, 10042, 10042, 10042,\n",
|
311 |
+
" 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n",
|
312 |
+
" 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n",
|
313 |
+
" 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n",
|
314 |
+
" 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n",
|
315 |
+
" 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n",
|
316 |
+
" 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n",
|
317 |
+
" 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n",
|
318 |
+
" 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n",
|
319 |
+
" 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n",
|
320 |
+
" 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n",
|
321 |
+
" 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n",
|
322 |
+
" 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n",
|
323 |
+
" 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n",
|
324 |
+
" 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n",
|
325 |
+
" 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n",
|
326 |
+
" 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n",
|
327 |
+
" 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n",
|
328 |
+
" 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n",
|
329 |
+
" 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n",
|
330 |
+
" 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n",
|
331 |
+
" 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n",
|
332 |
+
" 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n",
|
333 |
+
" 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n",
|
334 |
+
" 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n",
|
335 |
+
" 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n",
|
336 |
+
" 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n",
|
337 |
+
" 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n",
|
338 |
+
" 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n",
|
339 |
+
" 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n",
|
340 |
+
" 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n",
|
341 |
+
" 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n",
|
342 |
+
" 10042]], dtype=int32)"
|
343 |
+
]
|
344 |
+
},
|
345 |
+
"execution_count": 13,
|
346 |
+
"metadata": {},
|
347 |
+
"output_type": "execute_result"
|
348 |
+
}
|
349 |
+
],
|
350 |
+
"source": [
|
351 |
+
"greedy_output[0]"
|
352 |
+
]
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"cell_type": "markdown",
|
356 |
+
"metadata": {},
|
357 |
+
"source": [
|
358 |
+
"# VGAN Jax"
|
359 |
+
]
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"cell_type": "code",
|
363 |
+
"execution_count": 14,
|
364 |
+
"metadata": {},
|
365 |
+
"outputs": [],
|
366 |
+
"source": [
|
367 |
+
"import io\n",
|
368 |
+
"\n",
|
369 |
+
"import requests\n",
|
370 |
+
"from PIL import Image\n",
|
371 |
+
"import numpy as np\n",
|
372 |
+
"\n",
|
373 |
+
"import torch\n",
|
374 |
+
"import torchvision.transforms as T\n",
|
375 |
+
"import torchvision.transforms.functional as TF\n",
|
376 |
+
"from torchvision.transforms import InterpolationMode"
|
377 |
+
]
|
378 |
+
},
|
379 |
+
{
|
380 |
+
"cell_type": "code",
|
381 |
+
"execution_count": 15,
|
382 |
+
"metadata": {},
|
383 |
+
"outputs": [],
|
384 |
+
"source": [
|
385 |
+
"from modeling_flax_vqgan import VQModel"
|
386 |
+
]
|
387 |
+
},
|
388 |
+
{
|
389 |
+
"cell_type": "code",
|
390 |
+
"execution_count": 16,
|
391 |
+
"metadata": {},
|
392 |
+
"outputs": [],
|
393 |
+
"source": [
|
394 |
+
"def custom_to_pil(x):\n",
|
395 |
+
" x = np.clip(x, 0., 1.)\n",
|
396 |
+
" x = (255*x).astype(np.uint8)\n",
|
397 |
+
" x = Image.fromarray(x)\n",
|
398 |
+
" if not x.mode == \"RGB\":\n",
|
399 |
+
" x = x.convert(\"RGB\")\n",
|
400 |
+
" return x"
|
401 |
+
]
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"cell_type": "code",
|
405 |
+
"execution_count": 17,
|
406 |
+
"metadata": {
|
407 |
+
"colab": {
|
408 |
+
"base_uri": "https://localhost:8080/"
|
409 |
+
},
|
410 |
+
"id": "Jz032w73nHEf",
|
411 |
+
"outputId": "994d8e85-bff7-480b-8b69-f69dedc15c49"
|
412 |
+
},
|
413 |
+
"outputs": [
|
414 |
+
{
|
415 |
+
"name": "stdout",
|
416 |
+
"output_type": "stream",
|
417 |
+
"text": [
|
418 |
+
"Working with z of shape (1, 256, 16, 16) = 65536 dimensions.\n"
|
419 |
+
]
|
420 |
+
}
|
421 |
+
],
|
422 |
+
"source": [
|
423 |
+
"model = VQModel.from_pretrained(\"valhalla/vqgan-imagenet-f16-1024\")"
|
424 |
+
]
|
425 |
+
},
|
426 |
+
{
|
427 |
+
"cell_type": "code",
|
428 |
+
"execution_count": 18,
|
429 |
+
"metadata": {},
|
430 |
+
"outputs": [],
|
431 |
+
"source": [
|
432 |
+
"def get_images(indices, model):\n",
|
433 |
+
" indices = indices[:, 1:]\n",
|
434 |
+
" model.decode_code(indices)\n",
|
435 |
+
" return indices"
|
436 |
+
]
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"cell_type": "code",
|
440 |
+
"execution_count": 19,
|
441 |
+
"metadata": {},
|
442 |
+
"outputs": [
|
443 |
+
{
|
444 |
+
"name": "stdout",
|
445 |
+
"output_type": "stream",
|
446 |
+
"text": [
|
447 |
+
"Working with z of shape (1, 256, 16, 16) = 65536 dimensions.\n"
|
448 |
+
]
|
449 |
+
},
|
450 |
+
{
|
451 |
+
"data": {
|
452 |
+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAAEAAAEACAIAAAD9XIvPAAAAF0lEQVR4nGP4//8/EwMDwygexaN45GEA7ucE/J1FRrMAAAAASUVORK5CYII=\n",
|
453 |
+
"text/plain": [
|
454 |
+
"<PIL.Image.Image image mode=RGB size=1x256 at 0x7FE6389B6280>"
|
455 |
+
]
|
456 |
+
},
|
457 |
+
"execution_count": 19,
|
458 |
+
"metadata": {},
|
459 |
+
"output_type": "execute_result"
|
460 |
+
}
|
461 |
+
],
|
462 |
+
"source": [
|
463 |
+
"custom_to_pil(np.asarray(get_images(greedy_output[0], model)[0]))"
|
464 |
+
]
|
465 |
+
}
|
466 |
+
],
|
467 |
+
"metadata": {
|
468 |
+
"accelerator": "TPU",
|
469 |
+
"colab": {
|
470 |
+
"collapsed_sections": [],
|
471 |
+
"machine_shape": "hm",
|
472 |
+
"name": "CustomBARTv4b-model-generate.ipynb",
|
473 |
+
"provenance": []
|
474 |
+
},
|
475 |
+
"kernelspec": {
|
476 |
+
"display_name": "Python 3",
|
477 |
+
"language": "python",
|
478 |
+
"name": "python3"
|
479 |
+
},
|
480 |
+
"language_info": {
|
481 |
+
"codemirror_mode": {
|
482 |
+
"name": "ipython",
|
483 |
+
"version": 3
|
484 |
+
},
|
485 |
+
"file_extension": ".py",
|
486 |
+
"mimetype": "text/x-python",
|
487 |
+
"name": "python",
|
488 |
+
"nbconvert_exporter": "python",
|
489 |
+
"pygments_lexer": "ipython3",
|
490 |
+
"version": "3.8.8"
|
491 |
+
}
|
492 |
+
},
|
493 |
+
"nbformat": 4,
|
494 |
+
"nbformat_minor": 1
|
495 |
+
}
|