import os, sys, shutil
import numpy as np
from PIL import Image
import jax
from transformers import ViTFeatureExtractor
from transformers import GPT2Tokenizer
from huggingface_hub import hf_hub_download
current_path = os.path.dirname(os.path.abspath(__file__))
sys.path.append(current_path)
# Main model - ViTGPT2LM
from vit_gpt2.modeling_flax_vit_gpt2_lm import FlaxViTGPT2LMForConditionalGeneration
# create target model directory
model_dir = './models/'
os.makedirs(model_dir, exist_ok=True)
# copy config file
filepath = hf_hub_download("flax-community/vit-gpt2", "checkpoints/ckpt_5/config.json")
shutil.copyfile(filepath, os.path.join(model_dir, 'config.json'))
# copy model file
filepath = hf_hub_download("flax-community/vit-gpt2", "checkpoints/ckpt_5/flax_model.msgpack")
shutil.copyfile(filepath, os.path.join(model_dir, 'flax_model.msgpack'))
flax_vit_gpt2_lm = FlaxViTGPT2LMForConditionalGeneration.from_pretrained(model_dir)
vit_model_name = 'google/vit-base-patch16-224-in21k'
feature_extractor = ViTFeatureExtractor.from_pretrained(vit_model_name)
gpt2_model_name = 'asi/gpt-fr-cased-small'
tokenizer = GPT2Tokenizer.from_pretrained(gpt2_model_name)
max_length = 32
num_beams = 8
gen_kwargs = {"max_length": max_length, "num_beams": num_beams}
@jax.jit
def predict_fn(pixel_values):
return flax_vit_gpt2_lm.generate(pixel_values, **gen_kwargs)
def predict(image):
# batch dim is added automatically
encoder_inputs = feature_extractor(images=image, return_tensors="jax")
pixel_values = encoder_inputs.pixel_values
# generation
generation = predict_fn(pixel_values)
token_ids = np.array(generation.sequences)[0]
caption = tokenizer.decode(token_ids)
caption = caption.replace('', '').replace('', '').replace('', '')
caption.replace("à l'arrière-plan", '').replace("Une photo noire et blanche d'", '').replace("en arrière-plan", '')
while ' ' in caption:
caption = caption.replace(' ', ' ')
caption = caption.strip()
return caption
def compile():
image_path = 'samples/val_000000039769.jpg'
image = Image.open(image_path)
caption = predict(image)
image.close()
def predict_dummy(image):
return 'dummy caption!'
compile()
sample_dir = './samples/'
sample_fns = tuple([f"{int(f.replace('COCO_val2014_', '').replace('.jpg', ''))}.jpg" for f in os.listdir(sample_dir) if f.startswith('COCO_val2014_')])