koclip / text2image.py
jaketae's picture
feature: add intro page, cleanup descriptions
a811816
import os
import matplotlib.pyplot as plt
import numpy as np
import streamlit as st
from utils import load_index, load_model
def app(model_name):
images_directory = "images/val2017"
features_directory = f"features/val2017/{model_name}.tsv"
files, index = load_index(features_directory)
model, processor = load_model(f"koclip/{model_name}")
st.title("Text to Image Search Engine")
st.markdown(
"""
This demo explores KoCLIP's use case as a Korean image search engine. We pre-computed embeddings of 5000 images from [MSCOCO](https://cocodataset.org/#home) 2017 validation using KoCLIP's ViT backbone. Then, given a text query from the user, these image embeddings are ranked based on cosine similarity. Top matches are displayed below.
Example Queries: ์ปดํ“จํ„ฐํ•˜๋Š” ๊ณ ์–‘์ด (Cat playing on a computer), ๊ธธ ์œ„์—์„œ ๋‹ฌ๋ฆฌ๋Š” ์ž๋™์ฐจ (Car on the road)
"""
)
query = st.text_input("ํ•œ๊ธ€ ์งˆ๋ฌธ์„ ์ ์–ด์ฃผ์„ธ์š” (Korean Text Query) :", value="์ปดํ“จํ„ฐํ•˜๋Š” ๊ณ ์–‘์ด")
if st.button("์งˆ๋ฌธ (Query)"):
st.markdown("""---""")
with st.spinner("Computing..."):
proc = processor(
text=[query], images=None, return_tensors="jax", padding=True
)
vec = np.asarray(model.get_text_features(**proc))
ids, dists = index.knnQuery(vec, k=10)
result_files = map(lambda id: files[id], ids)
result_imgs, result_captions = [], []
for file, dist in zip(result_files, dists):
result_imgs.append(plt.imread(os.path.join(images_directory, file)))
result_captions.append("Score: {:.3f}".format(1.0 - dist))
st.image(result_imgs[:3], caption=result_captions[:3], width=200)
st.image(result_imgs[3:6], caption=result_captions[3:6], width=200)
st.image(result_imgs[6:9], caption=result_captions[6:9], width=200)
st.image(result_imgs[9:], caption=result_captions[9:], width=200)