Spaces:
Build error
Build error
import os | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import streamlit as st | |
from utils import load_index, load_model | |
def app(model_name): | |
images_directory = "images/val2017" | |
features_directory = f"features/val2017/{model_name}.tsv" | |
files, index = load_index(features_directory) | |
model, processor = load_model(f"koclip/{model_name}") | |
st.title("Text to Image Search Engine") | |
st.markdown( | |
""" | |
This demo explores KoCLIP's use case as a Korean image search engine. We pre-computed embeddings of 5000 images from [MSCOCO](https://cocodataset.org/#home) 2017 validation using KoCLIP's ViT backbone. Then, given a text query from the user, these image embeddings are ranked based on cosine similarity. Top matches are displayed below. | |
Example Queries: ์ปดํจํฐํ๋ ๊ณ ์์ด (Cat playing on a computer), ๊ธธ ์์์ ๋ฌ๋ฆฌ๋ ์๋์ฐจ (Car on the road) | |
""" | |
) | |
query = st.text_input("ํ๊ธ ์ง๋ฌธ์ ์ ์ด์ฃผ์ธ์ (Korean Text Query) :", value="์ปดํจํฐํ๋ ๊ณ ์์ด") | |
if st.button("์ง๋ฌธ (Query)"): | |
st.markdown("""---""") | |
with st.spinner("Computing..."): | |
proc = processor( | |
text=[query], images=None, return_tensors="jax", padding=True | |
) | |
vec = np.asarray(model.get_text_features(**proc)) | |
ids, dists = index.knnQuery(vec, k=10) | |
result_files = map(lambda id: files[id], ids) | |
result_imgs, result_captions = [], [] | |
for file, dist in zip(result_files, dists): | |
result_imgs.append(plt.imread(os.path.join(images_directory, file))) | |
result_captions.append("Score: {:.3f}".format(1.0 - dist)) | |
st.image(result_imgs[:3], caption=result_captions[:3], width=200) | |
st.image(result_imgs[3:6], caption=result_captions[3:6], width=200) | |
st.image(result_imgs[6:9], caption=result_captions[6:9], width=200) | |
st.image(result_imgs[9:], caption=result_captions[9:], width=200) | |