Spaces:
Build error
Build error
feature: show prob scores as bar chart
Browse files- image2text.py +18 -13
- requirements.txt +3 -1
image2text.py
CHANGED
@@ -1,8 +1,10 @@
|
|
1 |
import streamlit as st
|
|
|
2 |
import numpy as np
|
3 |
import jax
|
4 |
import jax.numpy as jnp
|
5 |
from PIL import Image
|
|
|
6 |
|
7 |
from utils import load_model
|
8 |
|
@@ -17,20 +19,21 @@ def app(model_name):
|
|
17 |
"""
|
18 |
)
|
19 |
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
if st.button("์ง๋ฌธ (Query)"):
|
24 |
-
if
|
25 |
-
st.error("Please upload an image
|
26 |
else:
|
27 |
-
|
|
|
28 |
st.image(image)
|
29 |
-
# pixel_values = processor(
|
30 |
-
# text=[""], images=image, return_tensors="jax", padding=True
|
31 |
-
# ).pixel_values
|
32 |
-
# pixel_values = jnp.transpose(pixel_values, axes=[0, 2, 3, 1])
|
33 |
-
# vec = np.asarray(model.get_image_features(pixel_values))
|
34 |
captions = captions.split(",")
|
35 |
inputs = processor(text=captions, images=image, return_tensors="jax", padding=True)
|
36 |
inputs["pixel_values"] = jnp.transpose(
|
@@ -38,8 +41,10 @@ def app(model_name):
|
|
38 |
)
|
39 |
outputs = model(**inputs)
|
40 |
probs = jax.nn.softmax(outputs.logits_per_image, axis=1)
|
41 |
-
|
42 |
-
|
43 |
-
|
|
|
|
|
44 |
|
45 |
|
|
|
1 |
import streamlit as st
|
2 |
+
import requests
|
3 |
import numpy as np
|
4 |
import jax
|
5 |
import jax.numpy as jnp
|
6 |
from PIL import Image
|
7 |
+
import pandas as pd
|
8 |
|
9 |
from utils import load_model
|
10 |
|
|
|
19 |
"""
|
20 |
)
|
21 |
|
22 |
+
query1 = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
23 |
+
query2 = st.text_input("or a URL to an image...")
|
24 |
+
|
25 |
+
captions = st.text_input(
|
26 |
+
"Enter candidate captions in comma-separated form.",
|
27 |
+
value="๊ท์ฌ์ด ๊ณ ์์ด,๋ฉ์๋ ๊ฐ์์ง,ํธ๋์คํฌ๋จธ"
|
28 |
+
)
|
29 |
|
30 |
if st.button("์ง๋ฌธ (Query)"):
|
31 |
+
if not any([query1, query2]):
|
32 |
+
st.error("Please upload an image or paste an image URL.")
|
33 |
else:
|
34 |
+
image_data = query1 if query1 is not None else requests.get(query2, stream=True).raw
|
35 |
+
image = Image.open(image_data)
|
36 |
st.image(image)
|
|
|
|
|
|
|
|
|
|
|
37 |
captions = captions.split(",")
|
38 |
inputs = processor(text=captions, images=image, return_tensors="jax", padding=True)
|
39 |
inputs["pixel_values"] = jnp.transpose(
|
|
|
41 |
)
|
42 |
outputs = model(**inputs)
|
43 |
probs = jax.nn.softmax(outputs.logits_per_image, axis=1)
|
44 |
+
score_dict = {captions[idx]: prob for idx, prob in enumerate(*probs)}
|
45 |
+
df = pd.DataFrame(score_dict.values(), index=score_dict.keys())
|
46 |
+
st.bar_chart(df)
|
47 |
+
# for idx, prob in sorted(enumerate(*probs), key=lambda x: x[1], reverse=True):
|
48 |
+
# st.text(f"Score: `{prob}`, {captions[idx]}")
|
49 |
|
50 |
|
requirements.txt
CHANGED
@@ -5,4 +5,6 @@ transformers
|
|
5 |
streamlit
|
6 |
tqdm
|
7 |
nmslib
|
8 |
-
matplotlib
|
|
|
|
|
|
5 |
streamlit
|
6 |
tqdm
|
7 |
nmslib
|
8 |
+
matplotlib
|
9 |
+
pandas
|
10 |
+
requests
|