musiclang / app.py
floriangardin's picture
choose chord progression
c915d01
raw
history blame
4.57 kB
import gradio as gr
from musiclang_predict import MusicLangPredictor
from musiclang import Score
from midi2audio import FluidSynth
import os
def inner_loop(nb_tokens, temperature, chord_progression, tempo, midi_file, bar_range):
top_p = 1.0
seed = 0
print(midi_file)
# Initialize the MusicLangPredictor
ml = MusicLangPredictor('musiclang/musiclang-v2')
if midi_file is not None:
# Load the MIDI file and use it as the score prompt
filepath = midi_file
start_bar, end_bar = map(int, bar_range.split("-"))
score = Score.from_midi(filepath, chord_range=(start_bar, end_bar))
else:
score = None # Default score is None if no MIDI file is uploaded
# Generate the score based on provided inputs and the uploaded MIDI file if available
if chord_progression.strip() == "" and score is None:
# Generate without specific chord progression or MIDI prompt
generated_score = ml.predict(
nb_tokens=int(nb_tokens),
temperature=float(temperature),
topp=top_p,
rng_seed=seed
)
elif score is not None:
# Generate using the uploaded MIDI file as a prompt
generated_score = ml.predict(
score=score, # Use the uploaded MIDI as the score prompt
nb_tokens=int(nb_tokens),
temperature=float(temperature),
topp=top_p,
rng_seed=seed
)
else:
# Generate with specific chord progression
generated_score = ml.predict_chords(
chord_progression,
time_signature=(4, 4),
temperature=temperature,
topp=top_p,
rng_seed=seed
)
chord_repr = generated_score.to_chord_repr()
# Save the generated score as a MIDI file
midi_path = 'test.mid'
generated_score.to_midi(midi_path, tempo=tempo, time_signature=(4, 4))
# Convert MIDI to WAV then WAV to MP3 for playback
wav_path = 'result.wav'
mp3_path = 'result.mp3'
FluidSynth("/usr/share/sounds/sf2/FluidR3_GM.sf2").midi_to_audio(midi_path, wav_path)
os.system(f'ffmpeg -i {wav_path} -acodec libmp3lame -y -loglevel quiet -stats {mp3_path}')
return mp3_path, midi_path, chord_repr
def musiclang(nb_tokens, temperature, chord_progression, tempo, midi_file, bar_range):
exception = None
mp3_path, midi_path, chord_repr = None, None, None
try:
mp3_path, midi_path, chord_repr = inner_loop(nb_tokens, temperature, chord_progression, tempo, midi_file, bar_range)
except Exception as e:
exception = "Error : " + e.__class__.__name__ + " " + str(e)
# Return the MP3 path for Gradio to display and the MIDI file path for download
return mp3_path, midi_path, chord_repr, exception
# Update Gradio interface to include MIDI file upload and bar range selection
iface = gr.Interface(
fn=musiclang,
inputs=[
gr.Number(label="Number of Tokens", value=1024, minimum=256, maximum=2048, step=256),
gr.Slider(label="Temperature", value=0.9, minimum=0.1, maximum=1.0, step=0.1),
gr.Textbox(label="Chord Progression", placeholder="Am CM Dm/F E7 Am", lines=2, value=""),
gr.Slider(label="Tempo", value=120, minimum=60, maximum=240, step=1),
gr.File(label="Upload MIDI File", type="filepath", file_types=[".mid", ".midi"]),
gr.Textbox(label="Bar Range", placeholder="0-4", value="0-4")
],
outputs=[
gr.Audio(label="Generated Music"),
gr.File(label="Download MIDI"),
gr.Textbox(label="Inferred output Chord Progression", lines=2, value=""),
gr.Textbox(label="Info Message") # Initially hidden, shown only if there's an error
],
title="Controllable Symbolic Music Generation with MusicLang Predict",
description="""
\n Simple music gen application that wraps <a href="https://github.com/musiclang/musiclang_predict">musiclang predict</a>.
Beware that the model generates a score, not audio : rendered audio is only to provide a quick preview of the generated music.
\n Customize the music generation by specifying the number of tokens, temperature, chord progression, tempo, and optionally uploading a MIDI file to use as a prompt. Specify the bar range for the MIDI prompt.
\nChord qualities: M, m, 7, m7, m7b5, sus2, sus4, M7, dim, dim7. You can also specify the bass if it belongs to the chord (e.g., Bm/D).
If no chord progression or MIDI file is given, it generates a free sample with the specified number of tokens."""
)
iface.launch()