Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,112 +1,5 @@
|
|
1 |
import gradio as gr
|
2 |
-
<<<<<<< HEAD
|
3 |
from detoxify import Detoxify
|
4 |
-
=======
|
5 |
-
import torch.nn as nn
|
6 |
-
import torch
|
7 |
-
from transformers import BertTokenizerFast as BertTokenizer, BertModel
|
8 |
-
import pytorch_lightning as pl
|
9 |
-
|
10 |
-
|
11 |
-
BERT_MODEL_NAME = 'bert-base-uncased'
|
12 |
-
tokenizer = BertTokenizer.from_pretrained(BERT_MODEL_NAME)
|
13 |
-
LABEL_COLUMNS = ['toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate']
|
14 |
-
MAX_TOKEN_COUNT = 300
|
15 |
-
|
16 |
-
|
17 |
-
class ToxicCommentTagger(pl.LightningModule):
|
18 |
-
|
19 |
-
def __init__(self, n_classes: int, n_training_steps=None, n_warmup_steps=None):
|
20 |
-
super().__init__()
|
21 |
-
self.bert = BertModel.from_pretrained(BERT_MODEL_NAME, return_dict=True)
|
22 |
-
self.classifier = nn.Linear(self.bert.config.hidden_size, n_classes)
|
23 |
-
self.n_training_steps = n_training_steps
|
24 |
-
self.n_warmup_steps = n_warmup_steps
|
25 |
-
self.criterion = nn.BCELoss()
|
26 |
-
|
27 |
-
|
28 |
-
def forward(self, input_ids, attention_mask, labels=None):
|
29 |
-
output = self.bert(input_ids, attention_mask=attention_mask)
|
30 |
-
output = self.classifier(output.pooler_output)
|
31 |
-
output = torch.sigmoid(output)
|
32 |
-
loss = 0
|
33 |
-
if labels is not None:
|
34 |
-
loss = self.criterion(output, labels)
|
35 |
-
return loss, output
|
36 |
-
|
37 |
-
|
38 |
-
def predict(model, tokenizer, sentence):
|
39 |
-
|
40 |
-
encoding = tokenizer.encode_plus(
|
41 |
-
sentence,
|
42 |
-
add_special_tokens=False,
|
43 |
-
max_length=MAX_TOKEN_COUNT,
|
44 |
-
return_token_type_ids=False,
|
45 |
-
padding="max_length",
|
46 |
-
return_attention_mask=True,
|
47 |
-
return_tensors='pt'
|
48 |
-
)
|
49 |
-
|
50 |
-
# define target chunksize
|
51 |
-
chunksize = MAX_TOKEN_COUNT
|
52 |
-
|
53 |
-
# split into chunks of 510 tokens, we also convert to list (default is tuple which is immutable)
|
54 |
-
input_id_chunks = list(encoding['input_ids'][0].split(chunksize - 2))
|
55 |
-
mask_chunks = list(encoding['attention_mask'][0].split(chunksize - 2))
|
56 |
-
|
57 |
-
# loop through each chunk
|
58 |
-
for i in range(len(input_id_chunks)):
|
59 |
-
# add CLS and SEP tokens to input IDs
|
60 |
-
input_id_chunks[i] = torch.cat([
|
61 |
-
torch.tensor([101]), input_id_chunks[i], torch.tensor([102])
|
62 |
-
])
|
63 |
-
# add attention tokens to attention mask
|
64 |
-
mask_chunks[i] = torch.cat([
|
65 |
-
torch.tensor([1]), mask_chunks[i], torch.tensor([1])
|
66 |
-
])
|
67 |
-
# get required padding length
|
68 |
-
pad_len = chunksize - input_id_chunks[i].shape[0]
|
69 |
-
# check if tensor length satisfies required chunk size
|
70 |
-
if pad_len > 0:
|
71 |
-
# if padding length is more than 0, we must add padding
|
72 |
-
input_id_chunks[i] = torch.cat([
|
73 |
-
input_id_chunks[i], torch.Tensor([0] * pad_len)
|
74 |
-
])
|
75 |
-
mask_chunks[i] = torch.cat([
|
76 |
-
mask_chunks[i], torch.Tensor([0] * pad_len)
|
77 |
-
])
|
78 |
-
|
79 |
-
input_ids = torch.stack(input_id_chunks)
|
80 |
-
attention_mask = torch.stack(mask_chunks)
|
81 |
-
|
82 |
-
input_dict = {
|
83 |
-
'input_ids': input_ids.long(),
|
84 |
-
'attention_mask': attention_mask.int()
|
85 |
-
}
|
86 |
-
|
87 |
-
_, test_prediction = model(**input_dict)
|
88 |
-
test_prediction = test_prediction.numpy()
|
89 |
-
|
90 |
-
output = {}
|
91 |
-
for chunk in test_prediction:
|
92 |
-
for label, prediction in zip(LABEL_COLUMNS, chunk):
|
93 |
-
if label in output:
|
94 |
-
output[label] = max(prediction, output[label])
|
95 |
-
else:
|
96 |
-
output[label] = prediction
|
97 |
-
|
98 |
-
return output
|
99 |
-
|
100 |
-
|
101 |
-
model = ToxicCommentTagger.load_from_checkpoint(
|
102 |
-
'./best-checkpoint.ckpt',
|
103 |
-
n_classes=len(LABEL_COLUMNS)
|
104 |
-
)
|
105 |
-
|
106 |
-
model.eval()
|
107 |
-
model.freeze()
|
108 |
-
|
109 |
-
>>>>>>> 2a04af3d9d5ddbaa3eb1631c0e56d215462a7e36
|
110 |
|
111 |
all_categories = {'all_categories': [
|
112 |
'toxicity',
|
|
|
1 |
import gradio as gr
|
|
|
2 |
from detoxify import Detoxify
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
all_categories = {'all_categories': [
|
5 |
'toxicity',
|