Spaces:
Sleeping
Sleeping
from PIL import Image | |
import torch | |
import numpy as np | |
import gradio as gr | |
from pathlib import Path | |
from busam import Busam | |
resize_to = 512 | |
checkpoint = "weights.pth" | |
device = "cpu" | |
print("Loading model...") | |
busam = Busam(checkpoint=checkpoint, device=device, side=resize_to) | |
minmaxnorm = lambda x: (x - x.min()) / (x.max() - x.min()) | |
def edge_inference(img, algorithm, th_low=None, th_high=None): | |
algorithm = algorithm.lower() | |
print("Loading image...") | |
img = np.array(img[:, :, :3]) | |
print("Getting features...") | |
pred, size = busam.process_image(img, do_activate=True) | |
print("Computing sobel...") | |
if algorithm == "sobel": | |
edge = busam.sobel_from_pred(pred, size) | |
elif algorithm == "canny": | |
th_low, th_high = th_low or 5000, th_high or 10000 | |
edge = busam.canny_from_pred(pred, size, th_low=th_low, th_high=th_high) | |
else: | |
raise ValueError("algorithm should be sobel or canny") | |
edge = edge.cpu().numpy() if isinstance(edge, torch.Tensor) else edge | |
print("Done") | |
return Image.fromarray( | |
(minmaxnorm(edge) * 255).astype(np.uint8) | |
).resize(size[::-1]) | |
def dimred_inference( | |
img, | |
algorithm, | |
resample_pct, | |
): | |
algorithm = algorithm.lower() | |
img = np.array(img[:, :, :3]) | |
print("Getting features...") | |
pred, size = busam.process_image(img, do_activate=True) | |
# pred is 1, F, S, S | |
assert pred.shape[1] >= 3, "should have at least 3 channels" | |
if algorithm == 'pca': | |
from sklearn.decomposition import PCA | |
reducer = PCA(n_components=3) | |
elif algorithm == 'tsne': | |
from sklearn.manifold import TSNE | |
reducer = TSNE(n_components=3) | |
elif algorithm == 'umap': | |
from umap import UMAP | |
reducer = UMAP(n_components=3) | |
else: | |
raise ValueError('algorithm should be pca, tsne or umap') | |
np_y_hat = pred.detach().cpu().permute(1, 0, 2, 3).numpy() # F, B, H, W | |
np_y_hat = np_y_hat.reshape(np_y_hat.shape[0], -1) # F, BHW | |
np_y_hat = np_y_hat.T # BHW, F | |
resample_pct = 10**resample_pct | |
resample_size = int(resample_pct * np_y_hat.shape[0]) | |
sampled_pixels = np_y_hat[:: np_y_hat.shape[0] // resample_size] | |
print("dim reduction fit..." + " " * 30, end="\r") | |
reducer = reducer.fit(sampled_pixels) | |
print("dim reduction transform..." + " " * 30, end="\r") | |
reducer.transform(np_y_hat[:10]) # to numba compile the function | |
np_y_hat = reducer.transform(np_y_hat) # BHW, 3 | |
print() | |
print('Done. Saving...') | |
# revert back to original shape | |
colors = np_y_hat.reshape(pred.shape[2], pred.shape[3], 3) | |
return Image.fromarray((minmaxnorm(colors) * 255).astype(np.uint8)).resize( | |
size[::-1] | |
) | |
def segmentation_inference(img, algorithm, scale): | |
algorithm = algorithm.lower() | |
img = np.array(img[:, :, :3]) | |
print("Getting features...") | |
pred, size = busam.process_image(img, do_activate=True) | |
print("Computing segmentation...") | |
if algorithm == "kmeans": | |
from sklearn.cluster import KMeans | |
n_clusters = int(100 / 100**scale) | |
kmeans = KMeans(n_clusters=n_clusters, random_state=0).fit( | |
pred.view(pred.shape[1], -1).T | |
) | |
labels = kmeans.labels_ | |
labels = labels.reshape(pred.shape[2], pred.shape[3]) | |
elif algorithm == "felzenszwalb": | |
from skimage.segmentation import felzenszwalb | |
labels = felzenszwalb( | |
(minmaxnorm(pred[0].cpu().numpy()) * 255).astype(np.uint8).transpose(1, 2, 0), | |
scale=10**(8*scale-3), | |
sigma=0, | |
min_size=50, | |
) | |
elif algorithm == "slic": | |
from skimage.segmentation import slic | |
labels = slic( | |
(minmaxnorm(pred[0].cpu().numpy()) * 255).astype(np.uint8).transpose(1, 2, 0), | |
n_segments = int(100 / 100**scale), | |
compactness=0.00001, | |
sigma=1, | |
) | |
elif algorithm == 'watershed': | |
from skimage.segmentation import watershed | |
from skimage.feature import peak_local_max | |
from scipy import ndimage as ndi | |
sobel = busam.sobel_from_pred(pred, size) | |
sobel = sobel.cpu().numpy() if isinstance(sobel, torch.Tensor) else sobel | |
# contrast stretch sobel with 5% largest | |
sobel = np.clip(sobel / np.percentile(sobel, 95), 0, 1) | |
distance = ndi.distance_transform_edt(sobel < 1) # distance to the borders | |
coords = peak_local_max(distance, min_distance=int(1+100*scale), labels=sobel<1) | |
mask = np.zeros(sobel.shape, dtype=bool) | |
mask[tuple(coords.T)] = True | |
markers, _ = ndi.label(mask) | |
labels = watershed(sobel, markers) | |
else: | |
raise ValueError("algorithm should be kmeans, felzenszwalb or slic") | |
print("Done") | |
# the labels have values that are usually close to each other in the image and in magnitude, which complicates visualization | |
# shuffle the labels to make them more visually distinct | |
out = labels.copy() | |
out[labels % 4 == 0] = labels[labels % 4 == 0] * 1 / 4 | |
out[labels % 4 == 1] = labels[labels % 4 == 1] * 4 // 4 + 1 | |
out[labels % 4 == 2] = labels[labels % 4 == 2] * 2 // 4 + 2 | |
out[labels % 4 == 3] = labels[labels % 4 == 3] * 3 // 4 + 3 | |
return Image.fromarray( | |
(minmaxnorm(out) * 255).astype(np.uint8) | |
).resize(size[::-1]) | |
def one_click_segmentation(img, row, col, threshold): | |
row, col = int(row), int(col) | |
img = np.array(img[:, :, :3]) | |
click_map = np.zeros(img.shape[:2], dtype=bool) | |
side = min(img.shape[:2]) // 100 | |
click_map[max(0, row-side):min(img.shape[0], row+side), max(0, col-side//5):min(img.shape[0], col+side//5)] = True | |
click_map[max(0, row-side//5):min(img.shape[0], row+side//5), max(0, col-side):min(img.shape[0], col+side)] = True | |
print("Getting features...") | |
pred, size = busam.process_image(img, do_activate=True) | |
print("Getting mask...") | |
mask = busam.get_mask((pred, size), (row, col)) | |
print("Done") | |
print('shapes=', img.shape, mask.shape, click_map.shape) | |
return (img, [(mask, 'Prediction'), (click_map, 'Click')]) | |
with gr.Blocks() as demo: | |
with gr.Tab('Edge detection'): | |
algorithm = "canny" | |
with gr.Row(): | |
def enable_sliders(algorithm): | |
algorithm = algorithm.lower() | |
return gr.Slider(visible=algorithm == "canny"), gr.Slider(visible=algorithm == "canny") | |
with gr.Column(): | |
image_input = gr.Image(label="Input Image") | |
run_button = gr.Button("Run") | |
algorithm = gr.Radio(["Sobel", "Canny"], label="Algorithm", value="Sobel") | |
# add sliders for th_low, th_high | |
th_low_slider = gr.Slider(0, 32768, 10000, label="Canny's low threshold", visible=False) | |
th_high_slider = gr.Slider(0, 32768, 20000, label="Canny's high threshold", visible=False) | |
algorithm.change(enable_sliders, inputs=[algorithm], outputs=[th_low_slider, th_high_slider]) | |
with gr.Column(): | |
output_image = gr.Image(label="Output Image") | |
run_button.click(edge_inference, inputs=[image_input, algorithm, th_low_slider, th_high_slider], outputs=output_image) | |
gr.Examples([str(p) for p in Path('demoimgs').glob('*')], inputs=image_input) | |
with gr.Tab('Reduction to 3D'): | |
with gr.Row(): | |
with gr.Column(): | |
image_input = gr.Image(label="Input Image") | |
algorithm = gr.Radio(["PCA", "TSNE", "UMAP"], label="Algorithm", value="PCA") | |
run_button = gr.Button("Run") | |
gr.Markdown("⚠️ UMAP is slow, TSNE is ULTRA-slow. They won't run on time. ⚠️") | |
resample_pct = gr.Slider(-5, 0, -3, label="Resample (10^x)*100%") | |
with gr.Column(): | |
output_image = gr.Image(label="Output Image") | |
run_button.click(dimred_inference, inputs=[image_input, algorithm, resample_pct], outputs=output_image) | |
gr.Examples([str(p) for p in Path('demoimgs').glob('*')], inputs=image_input) | |
with gr.Tab('Classical Segmentation'): | |
with gr.Row(): | |
with gr.Column(): | |
image_input = gr.Image(label="Input Image") | |
algorithm = gr.Radio(['KMeans', 'Felzenszwalb', 'SLIC', 'Watershed'], label="Algorithm", value="SLIC") | |
scale = gr.Slider(0.1, 1.0, 0.5, label="Scale") | |
run_button = gr.Button("Run") | |
with gr.Column(): | |
output_image = gr.Image(label="Output Image") | |
run_button.click(segmentation_inference, inputs=[image_input, algorithm, scale], outputs=output_image) | |
gr.Examples([str(p) for p in Path('demoimgs').glob('*')], inputs=image_input) | |
with gr.Tab('One-click segmentation'): | |
with gr.Row(): | |
with gr.Column(): | |
image_input = gr.Image(label="Input Image") | |
threshold = gr.Slider(0, 1, 0.5, label="Threshold") | |
with gr.Row(): | |
row = gr.Textbox(10, label="Click's row") | |
col = gr.Textbox(10, label="Click's column") | |
run_button = gr.Button("Run") | |
with gr.Column(): | |
output_image = gr.AnnotatedImage(label="Output") | |
run_button.click(one_click_segmentation, inputs=[image_input, row, col, threshold], outputs=output_image) | |
gr.Examples([str(p) for p in Path('demoimgs').glob('*')], inputs=image_input) | |
demo.launch(share=False) | |