Spaces:
Running
on
L40S
Running
on
L40S
# Copyright (c) Facebook, Inc. and its affiliates. | |
import torch | |
from torch import nn | |
from torch.autograd import Function | |
from torch.autograd.function import once_differentiable | |
from torch.nn.modules.utils import _pair | |
class _ROIAlignRotated(Function): | |
def forward(ctx, input, roi, output_size, spatial_scale, sampling_ratio): | |
ctx.save_for_backward(roi) | |
ctx.output_size = _pair(output_size) | |
ctx.spatial_scale = spatial_scale | |
ctx.sampling_ratio = sampling_ratio | |
ctx.input_shape = input.size() | |
output = torch.ops.detectron2.roi_align_rotated_forward( | |
input, roi, spatial_scale, output_size[0], output_size[1], sampling_ratio | |
) | |
return output | |
def backward(ctx, grad_output): | |
(rois,) = ctx.saved_tensors | |
output_size = ctx.output_size | |
spatial_scale = ctx.spatial_scale | |
sampling_ratio = ctx.sampling_ratio | |
bs, ch, h, w = ctx.input_shape | |
grad_input = torch.ops.detectron2.roi_align_rotated_backward( | |
grad_output, | |
rois, | |
spatial_scale, | |
output_size[0], | |
output_size[1], | |
bs, | |
ch, | |
h, | |
w, | |
sampling_ratio, | |
) | |
return grad_input, None, None, None, None, None | |
roi_align_rotated = _ROIAlignRotated.apply | |
class ROIAlignRotated(nn.Module): | |
def __init__(self, output_size, spatial_scale, sampling_ratio): | |
""" | |
Args: | |
output_size (tuple): h, w | |
spatial_scale (float): scale the input boxes by this number | |
sampling_ratio (int): number of inputs samples to take for each output | |
sample. 0 to take samples densely. | |
Note: | |
ROIAlignRotated supports continuous coordinate by default: | |
Given a continuous coordinate c, its two neighboring pixel indices (in our | |
pixel model) are computed by floor(c - 0.5) and ceil(c - 0.5). For example, | |
c=1.3 has pixel neighbors with discrete indices [0] and [1] (which are sampled | |
from the underlying signal at continuous coordinates 0.5 and 1.5). | |
""" | |
super(ROIAlignRotated, self).__init__() | |
self.output_size = output_size | |
self.spatial_scale = spatial_scale | |
self.sampling_ratio = sampling_ratio | |
def forward(self, input, rois): | |
""" | |
Args: | |
input: NCHW images | |
rois: Bx6 boxes. First column is the index into N. | |
The other 5 columns are (x_ctr, y_ctr, width, height, angle_degrees). | |
""" | |
assert rois.dim() == 2 and rois.size(1) == 6 | |
orig_dtype = input.dtype | |
if orig_dtype == torch.float16: | |
input = input.float() | |
rois = rois.float() | |
output_size = _pair(self.output_size) | |
# Scripting for Autograd is currently unsupported. | |
# This is a quick fix without having to rewrite code on the C++ side | |
if torch.jit.is_scripting() or torch.jit.is_tracing(): | |
return torch.ops.detectron2.roi_align_rotated_forward( | |
input, rois, self.spatial_scale, output_size[0], output_size[1], self.sampling_ratio | |
).to(dtype=orig_dtype) | |
return roi_align_rotated( | |
input, rois, self.output_size, self.spatial_scale, self.sampling_ratio | |
).to(dtype=orig_dtype) | |
def __repr__(self): | |
tmpstr = self.__class__.__name__ + "(" | |
tmpstr += "output_size=" + str(self.output_size) | |
tmpstr += ", spatial_scale=" + str(self.spatial_scale) | |
tmpstr += ", sampling_ratio=" + str(self.sampling_ratio) | |
tmpstr += ")" | |
return tmpstr | |