Spaces:
Running
on
L40S
Running
on
L40S
# Copyright (c) Facebook, Inc. and its affiliates. | |
import itertools | |
import warnings | |
from typing import Any, Dict, List, Tuple, Union | |
import torch | |
class Instances: | |
""" | |
This class represents a list of instances in an image. | |
It stores the attributes of instances (e.g., boxes, masks, labels, scores) as "fields". | |
All fields must have the same ``__len__`` which is the number of instances. | |
All other (non-field) attributes of this class are considered private: | |
they must start with '_' and are not modifiable by a user. | |
Some basic usage: | |
1. Set/get/check a field: | |
.. code-block:: python | |
instances.gt_boxes = Boxes(...) | |
print(instances.pred_masks) # a tensor of shape (N, H, W) | |
print('gt_masks' in instances) | |
2. ``len(instances)`` returns the number of instances | |
3. Indexing: ``instances[indices]`` will apply the indexing on all the fields | |
and returns a new :class:`Instances`. | |
Typically, ``indices`` is a integer vector of indices, | |
or a binary mask of length ``num_instances`` | |
.. code-block:: python | |
category_3_detections = instances[instances.pred_classes == 3] | |
confident_detections = instances[instances.scores > 0.9] | |
""" | |
def __init__(self, image_size: Tuple[int, int], **kwargs: Any): | |
""" | |
Args: | |
image_size (height, width): the spatial size of the image. | |
kwargs: fields to add to this `Instances`. | |
""" | |
self._image_size = image_size | |
self._fields: Dict[str, Any] = {} | |
for k, v in kwargs.items(): | |
self.set(k, v) | |
def image_size(self) -> Tuple[int, int]: | |
""" | |
Returns: | |
tuple: height, width | |
""" | |
return self._image_size | |
def __setattr__(self, name: str, val: Any) -> None: | |
if name.startswith("_"): | |
super().__setattr__(name, val) | |
else: | |
self.set(name, val) | |
def __getattr__(self, name: str) -> Any: | |
if name == "_fields" or name not in self._fields: | |
raise AttributeError("Cannot find field '{}' in the given Instances!".format(name)) | |
return self._fields[name] | |
def set(self, name: str, value: Any) -> None: | |
""" | |
Set the field named `name` to `value`. | |
The length of `value` must be the number of instances, | |
and must agree with other existing fields in this object. | |
""" | |
with warnings.catch_warnings(record=True): | |
data_len = len(value) | |
if len(self._fields): | |
assert ( | |
len(self) == data_len | |
), "Adding a field of length {} to a Instances of length {}".format(data_len, len(self)) | |
self._fields[name] = value | |
def has(self, name: str) -> bool: | |
""" | |
Returns: | |
bool: whether the field called `name` exists. | |
""" | |
return name in self._fields | |
def remove(self, name: str) -> None: | |
""" | |
Remove the field called `name`. | |
""" | |
del self._fields[name] | |
def get(self, name: str) -> Any: | |
""" | |
Returns the field called `name`. | |
""" | |
return self._fields[name] | |
def get_fields(self) -> Dict[str, Any]: | |
""" | |
Returns: | |
dict: a dict which maps names (str) to data of the fields | |
Modifying the returned dict will modify this instance. | |
""" | |
return self._fields | |
# Tensor-like methods | |
def to(self, *args: Any, **kwargs: Any) -> "Instances": | |
""" | |
Returns: | |
Instances: all fields are called with a `to(device)`, if the field has this method. | |
""" | |
ret = Instances(self._image_size) | |
for k, v in self._fields.items(): | |
if hasattr(v, "to"): | |
v = v.to(*args, **kwargs) | |
ret.set(k, v) | |
return ret | |
def __getitem__(self, item: Union[int, slice, torch.BoolTensor]) -> "Instances": | |
""" | |
Args: | |
item: an index-like object and will be used to index all the fields. | |
Returns: | |
If `item` is a string, return the data in the corresponding field. | |
Otherwise, returns an `Instances` where all fields are indexed by `item`. | |
""" | |
if type(item) == int: | |
if item >= len(self) or item < -len(self): | |
raise IndexError("Instances index out of range!") | |
else: | |
item = slice(item, None, len(self)) | |
ret = Instances(self._image_size) | |
for k, v in self._fields.items(): | |
ret.set(k, v[item]) | |
return ret | |
def __len__(self) -> int: | |
for v in self._fields.values(): | |
# use __len__ because len() has to be int and is not friendly to tracing | |
return v.__len__() | |
raise NotImplementedError("Empty Instances does not support __len__!") | |
def __iter__(self): | |
raise NotImplementedError("`Instances` object is not iterable!") | |
def cat(instance_lists: List["Instances"]) -> "Instances": | |
""" | |
Args: | |
instance_lists (list[Instances]) | |
Returns: | |
Instances | |
""" | |
assert all(isinstance(i, Instances) for i in instance_lists) | |
assert len(instance_lists) > 0 | |
if len(instance_lists) == 1: | |
return instance_lists[0] | |
image_size = instance_lists[0].image_size | |
if not isinstance(image_size, torch.Tensor): # could be a tensor in tracing | |
for i in instance_lists[1:]: | |
assert i.image_size == image_size | |
ret = Instances(image_size) | |
for k in instance_lists[0]._fields.keys(): | |
values = [i.get(k) for i in instance_lists] | |
v0 = values[0] | |
if isinstance(v0, torch.Tensor): | |
values = torch.cat(values, dim=0) | |
elif isinstance(v0, list): | |
values = list(itertools.chain(*values)) | |
elif hasattr(type(v0), "cat"): | |
values = type(v0).cat(values) | |
else: | |
raise ValueError("Unsupported type {} for concatenation".format(type(v0))) | |
ret.set(k, values) | |
return ret | |
def __str__(self) -> str: | |
s = self.__class__.__name__ + "(" | |
s += "num_instances={}, ".format(len(self)) | |
s += "image_height={}, ".format(self._image_size[0]) | |
s += "image_width={}, ".format(self._image_size[1]) | |
s += "fields=[{}])".format(", ".join((f"{k}: {v}" for k, v in self._fields.items()))) | |
return s | |
__repr__ = __str__ | |