Spaces:
Running
on
Zero
Running
on
Zero
Commit
•
4467a7b
1
Parent(s):
619c27a
Fix
Browse files- app.py +12 -11
- requirements.txt +1 -0
app.py
CHANGED
@@ -5,23 +5,25 @@ from PIL import Image
|
|
5 |
import torch
|
6 |
import time
|
7 |
import numpy as np
|
|
|
8 |
|
9 |
from transformers import RTDetrForObjectDetection, RTDetrImageProcessor
|
10 |
|
11 |
from draw_boxes import draw_bounding_boxes
|
12 |
|
13 |
image_processor = RTDetrImageProcessor.from_pretrained("PekingU/rtdetr_r50vd")
|
14 |
-
model = RTDetrForObjectDetection.from_pretrained("PekingU/rtdetr_r50vd")
|
15 |
|
16 |
|
17 |
-
SUBSAMPLE =
|
18 |
|
19 |
@spaces.GPU
|
20 |
def stream_object_detection(video, conf_threshold):
|
21 |
cap = cv2.VideoCapture(video)
|
22 |
|
23 |
-
video_codec = cv2.VideoWriter_fourcc(*"
|
24 |
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
|
|
25 |
desired_fps = fps // SUBSAMPLE
|
26 |
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) // 2
|
27 |
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) // 2
|
@@ -29,9 +31,8 @@ def stream_object_detection(video, conf_threshold):
|
|
29 |
iterating, frame = cap.read()
|
30 |
|
31 |
n_frames = 0
|
32 |
-
n_chunks = 0
|
33 |
|
34 |
-
name = f"output_{
|
35 |
segment_file = cv2.VideoWriter(name, video_codec, desired_fps, (width, height)) # type: ignore
|
36 |
batch = []
|
37 |
|
@@ -41,15 +42,16 @@ def stream_object_detection(video, conf_threshold):
|
|
41 |
if n_frames % SUBSAMPLE == 0:
|
42 |
batch.append(frame)
|
43 |
if len(batch) == 2 * desired_fps:
|
44 |
-
inputs = image_processor(images=batch, return_tensors="pt")
|
45 |
|
46 |
print(f"starting batch of size {len(batch)}")
|
47 |
start = time.time()
|
48 |
with torch.no_grad():
|
49 |
outputs = model(**inputs)
|
50 |
end = time.time()
|
51 |
-
print("time taken ", end - start)
|
52 |
|
|
|
53 |
boxes = image_processor.post_process_object_detection(
|
54 |
outputs,
|
55 |
target_sizes=torch.tensor([(height, width)] * len(batch)),
|
@@ -57,7 +59,6 @@ def stream_object_detection(video, conf_threshold):
|
|
57 |
|
58 |
for i, (array, box) in enumerate(zip(batch, boxes)):
|
59 |
pil_image = draw_bounding_boxes(Image.fromarray(array), box, model, conf_threshold)
|
60 |
-
pil_image.save(f"batch_{n_chunks}_detection_{i}.png")
|
61 |
frame = np.array(pil_image)
|
62 |
# Convert RGB to BGR
|
63 |
frame = frame[:, :, ::-1].copy()
|
@@ -66,9 +67,9 @@ def stream_object_detection(video, conf_threshold):
|
|
66 |
batch = []
|
67 |
segment_file.release()
|
68 |
yield name
|
69 |
-
|
70 |
-
|
71 |
-
name = f"output_{
|
72 |
segment_file = cv2.VideoWriter(name, video_codec, desired_fps, (width, height)) # type: ignore
|
73 |
|
74 |
iterating, frame = cap.read()
|
|
|
5 |
import torch
|
6 |
import time
|
7 |
import numpy as np
|
8 |
+
import uuid
|
9 |
|
10 |
from transformers import RTDetrForObjectDetection, RTDetrImageProcessor
|
11 |
|
12 |
from draw_boxes import draw_bounding_boxes
|
13 |
|
14 |
image_processor = RTDetrImageProcessor.from_pretrained("PekingU/rtdetr_r50vd")
|
15 |
+
model = RTDetrForObjectDetection.from_pretrained("PekingU/rtdetr_r50vd").to("cuda")
|
16 |
|
17 |
|
18 |
+
SUBSAMPLE = 2
|
19 |
|
20 |
@spaces.GPU
|
21 |
def stream_object_detection(video, conf_threshold):
|
22 |
cap = cv2.VideoCapture(video)
|
23 |
|
24 |
+
video_codec = cv2.VideoWriter_fourcc(*"mp4v") # type: ignore
|
25 |
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
26 |
+
|
27 |
desired_fps = fps // SUBSAMPLE
|
28 |
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) // 2
|
29 |
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) // 2
|
|
|
31 |
iterating, frame = cap.read()
|
32 |
|
33 |
n_frames = 0
|
|
|
34 |
|
35 |
+
name = f"output_{uuid.uuid4()}.mp4"
|
36 |
segment_file = cv2.VideoWriter(name, video_codec, desired_fps, (width, height)) # type: ignore
|
37 |
batch = []
|
38 |
|
|
|
42 |
if n_frames % SUBSAMPLE == 0:
|
43 |
batch.append(frame)
|
44 |
if len(batch) == 2 * desired_fps:
|
45 |
+
inputs = image_processor(images=batch, return_tensors="pt").to("cuda")
|
46 |
|
47 |
print(f"starting batch of size {len(batch)}")
|
48 |
start = time.time()
|
49 |
with torch.no_grad():
|
50 |
outputs = model(**inputs)
|
51 |
end = time.time()
|
52 |
+
print("time taken for inference", end - start)
|
53 |
|
54 |
+
start = time.time()
|
55 |
boxes = image_processor.post_process_object_detection(
|
56 |
outputs,
|
57 |
target_sizes=torch.tensor([(height, width)] * len(batch)),
|
|
|
59 |
|
60 |
for i, (array, box) in enumerate(zip(batch, boxes)):
|
61 |
pil_image = draw_bounding_boxes(Image.fromarray(array), box, model, conf_threshold)
|
|
|
62 |
frame = np.array(pil_image)
|
63 |
# Convert RGB to BGR
|
64 |
frame = frame[:, :, ::-1].copy()
|
|
|
67 |
batch = []
|
68 |
segment_file.release()
|
69 |
yield name
|
70 |
+
end = time.time()
|
71 |
+
print("time taken for processing boxes", end - start)
|
72 |
+
name = f"output_{uuid.uuid4()}.mp4"
|
73 |
segment_file = cv2.VideoWriter(name, video_codec, desired_fps, (width, height)) # type: ignore
|
74 |
|
75 |
iterating, frame = cap.read()
|
requirements.txt
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
safetensors==0.4.3
|
2 |
opencv-python
|
3 |
torch
|
|
|
1 |
+
--extra-index-url https://download.pytorch.org/whl/cu113
|
2 |
safetensors==0.4.3
|
3 |
opencv-python
|
4 |
torch
|