Spaces:
Running
on
Zero
Running
on
Zero
Commit
•
9740995
1
Parent(s):
8fbff22
Go back to yolov10
Browse files- app.py +25 -63
- requirements.txt +1 -1
app.py
CHANGED
@@ -2,81 +2,42 @@ import spaces
|
|
2 |
import gradio as gr
|
3 |
import cv2
|
4 |
import tempfile
|
5 |
-
from
|
6 |
-
from transformers import RTDetrForObjectDetection, RTDetrImageProcessor
|
7 |
-
import torch
|
8 |
-
import requests
|
9 |
|
10 |
-
|
11 |
-
model = RTDetrForObjectDetection.from_pretrained("PekingU/rtdetr_r50vd", torch_dtype=torch.float16).to("cuda")
|
12 |
-
model = torch.compile(model, mode="reduce-overhead")
|
13 |
-
|
14 |
-
# Compile by running inference
|
15 |
-
url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
|
16 |
-
image = Image.open(requests.get(url, stream=True).raw)
|
17 |
-
inputs = image_processor(images=image, return_tensors="pt").to("cuda", torch.float16)
|
18 |
-
with torch.no_grad():
|
19 |
-
outputs = model(**inputs)
|
20 |
-
|
21 |
-
def draw_bounding_boxes(image, results, model, threshold=0.3):
|
22 |
-
draw = ImageDraw.Draw(image)
|
23 |
-
for result in results:
|
24 |
-
for score, label_id, box in zip(
|
25 |
-
result["scores"], result["labels"], result["boxes"]
|
26 |
-
):
|
27 |
-
if score > threshold:
|
28 |
-
label = model.config.id2label[label_id.item()]
|
29 |
-
box = [round(i) for i in box.tolist()]
|
30 |
-
draw.rectangle(box, outline="red", width=3)
|
31 |
-
draw.text((box[0], box[1]), f"{label}: {score:.2f}", fill="red")
|
32 |
-
return image
|
33 |
-
|
34 |
-
import time
|
35 |
|
36 |
@spaces.GPU
|
37 |
-
def
|
38 |
-
|
39 |
-
|
40 |
start = time.time()
|
41 |
-
|
42 |
-
outputs = model(**inputs)
|
43 |
-
|
44 |
-
results = image_processor.post_process_object_detection(
|
45 |
-
outputs, target_sizes=torch.tensor([image.size[::-1]]), threshold=conf_threshold
|
46 |
-
)
|
47 |
end = time.time()
|
48 |
-
print("time
|
|
|
|
|
49 |
|
50 |
-
bbs = draw_bounding_boxes(image, results, model, threshold=conf_threshold)
|
51 |
-
print("bbs: ", time.time() - end)
|
52 |
-
return bbs
|
53 |
|
54 |
-
|
55 |
-
css = """.my-group {max-width: 600px !important; max-height: 600 !important;}
|
56 |
.my-column {display: flex !important; justify-content: center !important; align-items: center !important};"""
|
57 |
|
|
|
58 |
with gr.Blocks(css=css) as app:
|
59 |
gr.HTML(
|
60 |
"""
|
61 |
<h1 style='text-align: center'>
|
62 |
-
|
63 |
</h1>
|
64 |
-
"""
|
65 |
-
)
|
66 |
gr.HTML(
|
67 |
"""
|
68 |
<h3 style='text-align: center'>
|
69 |
-
<a href='https://arxiv.org/abs/
|
70 |
</h3>
|
71 |
-
"""
|
72 |
-
)
|
73 |
with gr.Column(elem_classes=["my-column"]):
|
74 |
with gr.Group(elem_classes=["my-group"]):
|
75 |
-
image = gr.Image(
|
76 |
-
type="pil",
|
77 |
-
label="Image",
|
78 |
-
sources="webcam",
|
79 |
-
)
|
80 |
conf_threshold = gr.Slider(
|
81 |
label="Confidence Threshold",
|
82 |
minimum=0.0,
|
@@ -84,12 +45,13 @@ with gr.Blocks(css=css) as app:
|
|
84 |
step=0.05,
|
85 |
value=0.85,
|
86 |
)
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
|
|
95 |
app.launch()
|
|
|
2 |
import gradio as gr
|
3 |
import cv2
|
4 |
import tempfile
|
5 |
+
from ultralytics import YOLOv10
|
|
|
|
|
|
|
6 |
|
7 |
+
model = YOLOv10.from_pretrained(f'jameslahm/yolov10n')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
@spaces.GPU
|
10 |
+
def yolov10_inference(image, conf_threshold):
|
11 |
+
width, _ = image.size
|
12 |
+
import time
|
13 |
start = time.time()
|
14 |
+
results = model.predict(source=image, imgsz=width, conf=conf_threshold)
|
|
|
|
|
|
|
|
|
|
|
15 |
end = time.time()
|
16 |
+
print("time", end - start)
|
17 |
+
annotated_image = results[0].plot()
|
18 |
+
return annotated_image[:, :, ::-1]
|
19 |
|
|
|
|
|
|
|
20 |
|
21 |
+
css=""".my-group {max-width: 600px !important; max-height: 600 !important;}
|
|
|
22 |
.my-column {display: flex !important; justify-content: center !important; align-items: center !important};"""
|
23 |
|
24 |
+
|
25 |
with gr.Blocks(css=css) as app:
|
26 |
gr.HTML(
|
27 |
"""
|
28 |
<h1 style='text-align: center'>
|
29 |
+
YOLOv10 Webcam Stream
|
30 |
</h1>
|
31 |
+
""")
|
|
|
32 |
gr.HTML(
|
33 |
"""
|
34 |
<h3 style='text-align: center'>
|
35 |
+
<a href='https://arxiv.org/abs/2405.14458' target='_blank'>arXiv</a> | <a href='https://github.com/THU-MIG/yolov10' target='_blank'>github</a>
|
36 |
</h3>
|
37 |
+
""")
|
|
|
38 |
with gr.Column(elem_classes=["my-column"]):
|
39 |
with gr.Group(elem_classes=["my-group"]):
|
40 |
+
image = gr.Image(type="pil", label="Image", sources="webcam")
|
|
|
|
|
|
|
|
|
41 |
conf_threshold = gr.Slider(
|
42 |
label="Confidence Threshold",
|
43 |
minimum=0.0,
|
|
|
45 |
step=0.05,
|
46 |
value=0.85,
|
47 |
)
|
48 |
+
image.stream(
|
49 |
+
fn=yolov10_inference,
|
50 |
+
inputs=[image, conf_threshold],
|
51 |
+
outputs=[image],
|
52 |
+
stream_every=0.2,
|
53 |
+
time_limit=30
|
54 |
+
)
|
55 |
+
|
56 |
+
if __name__ == '__main__':
|
57 |
app.launch()
|
requirements.txt
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
safetensors==0.4.3
|
2 |
-
|
3 |
gradio-client @ git+https://github.com/gradio-app/gradio@66349fe26827e3a3c15b738a1177e95fec7f5554#subdirectory=client/python
|
4 |
https://gradio-pypi-previews.s3.amazonaws.com/66349fe26827e3a3c15b738a1177e95fec7f5554/gradio-4.42.0-py3-none-any.whl
|
|
|
1 |
safetensors==0.4.3
|
2 |
+
git+https://github.com/THU-MIG/yolov10.git
|
3 |
gradio-client @ git+https://github.com/gradio-app/gradio@66349fe26827e3a3c15b738a1177e95fec7f5554#subdirectory=client/python
|
4 |
https://gradio-pypi-previews.s3.amazonaws.com/66349fe26827e3a3c15b738a1177e95fec7f5554/gradio-4.42.0-py3-none-any.whl
|