Spaces:
Sleeping
Sleeping
import gradio as gr | |
import cv2 | |
import numpy as np | |
import os | |
from PIL import Image | |
import torch | |
import torch.nn.functional as F | |
from torchvision.transforms import Compose | |
import tempfile | |
from gradio_imageslider import ImageSlider | |
from depth_anything.dpt import DepthAnything | |
from depth_anything.util.transform import Resize, NormalizeImage, PrepareForNet | |
css = """ | |
#img-display-container { | |
max-height: 100vh; | |
} | |
#img-display-input { | |
max-height: 80vh; | |
} | |
#img-display-output { | |
max-height: 80vh; | |
} | |
""" | |
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' | |
model = DepthAnything.from_pretrained('LiheYoung/depth_anything_vitl14').to(DEVICE).eval() | |
title = "# Depth Anything" | |
description = """Official demo for **Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data**. | |
Please refer to our [paper](https://arxiv.org/abs/2401.10891), [project page](https://depth-anything.github.io), or [github](https://github.com/LiheYoung/Depth-Anything) for more details.""" | |
transform = Compose([ | |
Resize( | |
width=518, | |
height=518, | |
resize_target=False, | |
keep_aspect_ratio=True, | |
ensure_multiple_of=14, | |
resize_method='lower_bound', | |
image_interpolation_method=cv2.INTER_CUBIC, | |
), | |
NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), | |
PrepareForNet(), | |
]) | |
margin_width = 50 | |
def predict_depth(model, image): | |
return model(image) | |
with gr.Blocks(css=css) as demo: | |
gr.Markdown(title) | |
gr.Markdown(description) | |
gr.Markdown("### Depth Prediction demo") | |
gr.Markdown("You can slide the output to compare the depth prediction with input image") | |
with gr.Tab("Image Depth Prediction"): | |
with gr.Row(): | |
input_image = gr.Image(label="Input Image", type='numpy', elem_id='img-display-input') | |
depth_image_slider = ImageSlider(label="Depth Map with Slider View", elem_id='img-display-output', position=0.5) | |
raw_file = gr.File(label="16-bit raw depth (can be considered as disparity)") | |
submit = gr.Button("Submit") | |
def on_submit(image): | |
original_image = image.copy() | |
h, w = image.shape[:2] | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) / 255.0 | |
image = transform({'image': image})['image'] | |
image = torch.from_numpy(image).unsqueeze(0).to(DEVICE) | |
depth = predict_depth(model, image) | |
depth = F.interpolate(depth[None], (h, w), mode='bilinear', align_corners=False)[0, 0] | |
raw_depth = Image.fromarray(depth.cpu().numpy().astype('uint16')) | |
tmp = tempfile.NamedTemporaryFile(suffix='.png', delete=False) | |
raw_depth.save(tmp.name) | |
depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0 | |
depth = depth.cpu().numpy().astype(np.uint8) | |
colored_depth = cv2.applyColorMap(depth, cv2.COLORMAP_INFERNO)[:, :, ::-1] | |
return [(original_image, colored_depth), tmp.name] | |
submit.click(on_submit, inputs=[input_image], outputs=[depth_image_slider, raw_file]) | |
example_files = os.listdir('assets/examples') | |
example_files.sort() | |
example_files = [os.path.join('assets/examples', filename) for filename in example_files] | |
examples = gr.Examples(examples=example_files, inputs=[input_image], outputs=[depth_image_slider, raw_file], fn=on_submit, cache_examples=True) | |
with gr.Tab("Video Depth Prediction"): | |
with gr.Row(): | |
input_video = gr.Video(label="Input Video") | |
submit = gr.Button("Submit") | |
processed_video = gr.Video(label="Processed Video") | |
def on_submit(filename): | |
raw_video = cv2.VideoCapture(filename) | |
frame_width, frame_height = int(raw_video.get(cv2.CAP_PROP_FRAME_WIDTH)), int(raw_video.get(cv2.CAP_PROP_FRAME_HEIGHT)) | |
frame_rate = int(raw_video.get(cv2.CAP_PROP_FPS)) | |
output_width = frame_width * 2 + margin_width | |
with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as tmpfile: | |
output_path = tmpfile.name | |
out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*"mp4v"), frame_rate, (output_width, frame_height)) | |
while raw_video.isOpened(): | |
ret, raw_frame = raw_video.read() | |
if not ret: | |
break | |
frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2RGB) / 255.0 | |
frame = transform({'image': frame})['image'] | |
frame = torch.from_numpy(frame).unsqueeze(0).to(DEVICE) | |
depth = predict_depth(model, frame) | |
depth = F.interpolate(depth[None], (frame_height, frame_width), mode='bilinear', align_corners=False)[0, 0] | |
depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0 | |
depth = depth.cpu().numpy().astype(np.uint8) | |
depth_color = cv2.applyColorMap(depth, cv2.COLORMAP_INFERNO) | |
split_region = np.ones((frame_height, margin_width, 3), dtype=np.uint8) * 255 | |
combined_frame = cv2.hconcat([raw_frame, split_region, depth_color]) | |
out.write(combined_frame) | |
raw_video.release() | |
out.release() | |
return output_path | |
submit.click(on_submit, inputs=[input_video], outputs=processed_video) | |
example_files = os.listdir('assets/examples_video') | |
example_files.sort() | |
example_files = [os.path.join('assets/examples_video', filename) for filename in example_files] | |
examples = gr.Examples(examples=example_files, inputs=[input_video], outputs=processed_video, fn=on_submit, cache_examples=True) | |
if __name__ == '__main__': | |
demo.queue().launch() | |