Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
from transformers import BartForConditionalGeneration, TapexTokenizer, T5ForConditionalGeneration, T5Tokenizer | |
from prophet import Prophet | |
# Abrindo e lendo o arquivo CSS | |
with open("style.css", "r") as css: | |
css_style = css.read() | |
# Markdown combinado com a importação da fonte e o HTML | |
html_content = f""" | |
<style> | |
{css_style} | |
@import url('https://fonts.googleapis.com/css2?family=Kanit:wght@700&display=swap'); | |
</style> | |
<div style='display: flex; flex-direction: column; align-items: flex-start;'> | |
<div style='display: flex; align-items: center;'> | |
<div style='width: 20px; height: 5px; background-color: green; margin-right: 0px;'></div> | |
<div style='width: 20px; height: 5px; background-color: red; margin-right: 0px;'></div> | |
<div style='width: 20px; height: 5px; background-color: yellow; margin-right: 18px;'></div> | |
<span style='font-size: 38px; font-weight: normal; font-family: "Kanit", sans-serif;'>NOSTRADAMUS</span> | |
</div> | |
</div> | |
""" | |
# Aplicar o markdown combinado no Streamlit | |
st.markdown(html_content, unsafe_allow_html=True) | |
# Cache models to prevent re-loading on every run | |
#@st.cache_resource | |
def load_translation_model(model_name): | |
return T5ForConditionalGeneration.from_pretrained(model_name) | |
#@st.cache_resource | |
def load_tapex_model(): | |
return BartForConditionalGeneration.from_pretrained("microsoft/tapex-large-finetuned-wtq") | |
#@st.cache_resource | |
def load_tapex_tokenizer(): | |
return TapexTokenizer.from_pretrained("microsoft/tapex-large-finetuned-wtq") | |
pt_en_translator = load_translation_model("unicamp-dl/translation-pt-en-t5") | |
en_pt_translator = load_translation_model("unicamp-dl/translation-en-pt-t5") | |
tapex_model = load_tapex_model() | |
tapex_tokenizer = load_tapex_tokenizer() | |
tokenizer = T5Tokenizer.from_pretrained("unicamp-dl/translation-pt-en-t5") | |
def translate(text, model, tokenizer, source_lang="pt", target_lang="en"): | |
input_ids = tokenizer.encode(text, return_tensors="pt", add_special_tokens=True) | |
outputs = model.generate(input_ids) | |
translated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return translated_text | |
# Function to translate and interact with TAPEX model | |
def response(user_question, all_anomalies): | |
question_en = translate(user_question, pt_en_translator, tokenizer, source_lang="pt", target_lang="en") | |
encoding = tapex_tokenizer(table=all_anomalies, query=[question_en], padding=True, return_tensors="pt", truncation=True) | |
outputs = tapex_model.generate(**encoding) | |
response_en = tapex_tokenizer.batch_decode(outputs, skip_special_tokens=True)[0] | |
response_pt = translate(response_en, en_pt_translator, tokenizer, source_lang="en", target_lang="pt") | |
return response_pt | |
# Load and preprocess the data | |
def load_data(uploaded_file): | |
if uploaded_file.name.endswith('.csv'): | |
df = pd.read_csv(uploaded_file, quotechar='"', encoding='utf-8') | |
elif uploaded_file.name.endswith('.xlsx'): | |
df = pd.read_excel(uploaded_file) | |
return df | |
def preprocess_data(df): | |
new_df = df.iloc[2:,9:-1].fillna(0) | |
new_df.columns = df.iloc[1,9:-1] | |
new_df.columns = new_df.columns.str.replace(r" \(\d+\)", "", regex=True) | |
month_dict = { | |
'Jan': '01', 'Fev': '02', 'Mar': '03', 'Abr': '04', | |
'Mai': '05', 'Jun': '06', 'Jul': '07', 'Ago': '08', | |
'Set': '09', 'Out': '10', 'Nov': '11', 'Dez': '12' | |
} | |
def convert_column_name(column_name): | |
# Check if the column name is 'Rótulos de Linha' | |
if column_name == 'Rótulos de Linha': | |
return column_name | |
# Otherwise, proceed to convert | |
parts = column_name.split('/') | |
month = parts[0].strip() | |
year = parts[1].strip() | |
# Clean year in case there are extra characters | |
year = ''.join(filter(str.isdigit, year)) | |
# Get month number from the dictionary | |
month_number = month_dict.get(month, '00') # Default '00' if month is not found | |
# Return formatted date string | |
return f"{month_number}/{year}" | |
new_df.columns = [convert_column_name(col) for col in new_df.columns] | |
new_df.columns = pd.to_datetime(new_df.columns, errors='coerce') | |
new_df.rename(columns={new_df.columns[0]: 'Rotulo'}, inplace=True) | |
df_clean = new_df.copy() | |
return df_clean | |
# Cache the Prophet computation to avoid recomputing | |
def apply_prophet(df_clean): | |
if df_clean.empty: | |
st.error("DataFrame está vazio após o pré-processamento.") | |
return pd.DataFrame() | |
# Debugging: Check structure of df_clean | |
#st.write("Estrutura do DataFrame df_clean:") | |
#st.write(df_clean) | |
# Criar um DataFrame vazio para armazenar todas as anomalias | |
all_anomalies = pd.DataFrame() | |
# Processar cada linha no DataFrame | |
for index, row in df_clean.iterrows(): | |
# Extract timestamp and value columns | |
date_columns = [col for col in df_clean.columns if isinstance(col, pd.Timestamp)] | |
data = pd.DataFrame({ | |
'ds': date_columns, | |
'y': row[date_columns].values | |
}) | |
# Debugging: Check the data passed into Prophet | |
#st.write(f"Dados para Prophet - Grupo {row['Rotulo']}:") | |
#st.write(data) | |
# Remove rows where 'y' is zero or missing | |
data = data[data['y'] > 0].dropna().reset_index(drop=True) | |
# Ensure there's enough data for Prophet to run | |
if data.empty or len(data) < 2: | |
#st.write(f"Pular grupo {row['Rotulo']} por não ter observações suficientes.") | |
continue | |
try: | |
# Create and fit the Prophet model | |
model = Prophet(interval_width=0.95) | |
model.fit(data) | |
except ValueError as e: | |
#st.write(f"Pular grupo {row['Rotulo']} devido ao erro: {e}") | |
continue | |
# Make future predictions | |
future = model.make_future_dataframe(periods=12, freq='M') | |
forecast = model.predict(future) | |
# Add real values and calculate anomalies | |
real_values = list(data['y']) + [None] * (len(forecast) - len(data)) | |
forecast['real'] = real_values | |
anomalies = forecast[(forecast['real'] < forecast['yhat_lower']) | (forecast['real'] > forecast['yhat_upper'])] | |
# Debugging: Check the anomalies detected | |
#st.write(f"Anomalias detectadas para o grupo {row['Rotulo']}:") | |
#st.write(anomalies) | |
# Add group label and append anomalies to all_anomalies DataFrame | |
anomalies['group'] = row['Rotulo'] | |
all_anomalies = pd.concat([all_anomalies, anomalies[['ds', 'real', 'group']]], ignore_index=True) | |
# Return the dataframe of all anomalies | |
st.write(f"Concluída a aplicação do modelo de série tempotal") | |
st.write(all_anomalies.head()) | |
all_anomalies.sort_values(by=['real'], ascending=False, inplace=True) | |
all_anomalies['real'] = pd.to_numeric(all_anomalies['real'], errors='coerce') | |
all_anomalies = all_anomalies[all_anomalies['real'] >= 10000000.00] | |
all_anomalies = all_anomalies.astype(str) | |
return all_anomalies | |
# Initialize session states | |
if 'all_anomalies' not in st.session_state: | |
st.session_state['all_anomalies'] = pd.DataFrame() | |
if 'history' not in st.session_state: | |
st.session_state['history'] = [] | |
tab1, tab2 = st.tabs(["Meta Prophet", "Microsoft TAPEX"]) | |
# Interface para carregar arquivo | |
uploaded_file = st.file_uploader("Carregue um arquivo CSV ou XLSX", type=['csv', 'xlsx']) | |
with tab1: | |
if uploaded_file: | |
df = load_data(uploaded_file) | |
df_clean = preprocess_data(df) | |
if df_clean.empty: | |
st.warning("Não há dados válidos para processar.") | |
else: | |
# Cache the Prophet results | |
#if st.session_state['all_anomalies'].empty: | |
#with st.spinner('Aplicando modelo de série temporal...'): | |
#all_anomalies = apply_prophet(df_clean) | |
#st.session_state['all_anomalies'] = all_anomalies | |
# Cache the Prophet results | |
if st.session_state['all_anomalies'].empty: | |
all_anomalies = apply_prophet(df_clean) | |
st.session_state['all_anomalies'] = all_anomalies | |
with tab2: | |
if 'all_anomalies' in st.session_state and not st.session_state['all_anomalies'].empty: | |
user_question = st.text_input("Escreva sua questão aqui:", "") | |
if user_question: | |
bot_response = response(user_question, st.session_state['all_anomalies']) | |
st.session_state['history'].append(('👤', user_question)) | |
st.session_state['history'].append(('🤖', bot_response)) | |
for sender, message in st.session_state['history']: | |
st.markdown(f"**{sender} {message}**") | |
if st.button("Limpar histórico"): | |
st.session_state['history'] = [] | |
else: | |
st.warning("Por favor, processe os dados no Meta Prophet primeiro.") |