import streamlit as st import pandas as pd from transformers import BartForConditionalGeneration, TapexTokenizer, T5ForConditionalGeneration, T5Tokenizer from prophet import Prophet # Abrindo e lendo o arquivo CSS with open("style.css", "r") as css: css_style = css.read() # Markdown combinado com a importação da fonte e o HTML html_content = f"""
NOSTRADAMUS
""" # Aplicar o markdown combinado no Streamlit st.markdown(html_content, unsafe_allow_html=True) # Cache models to prevent re-loading on every run #@st.cache_resource def load_translation_model(model_name): return T5ForConditionalGeneration.from_pretrained(model_name) #@st.cache_resource def load_tapex_model(): return BartForConditionalGeneration.from_pretrained("microsoft/tapex-large-finetuned-wtq") #@st.cache_resource def load_tapex_tokenizer(): return TapexTokenizer.from_pretrained("microsoft/tapex-large-finetuned-wtq") pt_en_translator = load_translation_model("unicamp-dl/translation-pt-en-t5") en_pt_translator = load_translation_model("unicamp-dl/translation-en-pt-t5") tapex_model = load_tapex_model() tapex_tokenizer = load_tapex_tokenizer() tokenizer = T5Tokenizer.from_pretrained("unicamp-dl/translation-pt-en-t5") def translate(text, model, tokenizer, source_lang="pt", target_lang="en"): input_ids = tokenizer.encode(text, return_tensors="pt", add_special_tokens=True) outputs = model.generate(input_ids) translated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) return translated_text # Function to translate and interact with TAPEX model def response(user_question, all_anomalies): question_en = translate(user_question, pt_en_translator, tokenizer, source_lang="pt", target_lang="en") encoding = tapex_tokenizer(table=all_anomalies, query=[question_en], padding=True, return_tensors="pt", truncation=True) outputs = tapex_model.generate(**encoding) response_en = tapex_tokenizer.batch_decode(outputs, skip_special_tokens=True)[0] response_pt = translate(response_en, en_pt_translator, tokenizer, source_lang="en", target_lang="pt") return response_pt # Load and preprocess the data def load_data(uploaded_file): if uploaded_file.name.endswith('.csv'): df = pd.read_csv(uploaded_file, quotechar='"', encoding='utf-8') elif uploaded_file.name.endswith('.xlsx'): df = pd.read_excel(uploaded_file) return df def preprocess_data(df): new_df = df.iloc[2:,9:-1].fillna(0) new_df.columns = df.iloc[1,9:-1] new_df.columns = new_df.columns.str.replace(r" \(\d+\)", "", regex=True) month_dict = { 'Jan': '01', 'Fev': '02', 'Mar': '03', 'Abr': '04', 'Mai': '05', 'Jun': '06', 'Jul': '07', 'Ago': '08', 'Set': '09', 'Out': '10', 'Nov': '11', 'Dez': '12' } def convert_column_name(column_name): # Check if the column name is 'Rótulos de Linha' if column_name == 'Rótulos de Linha': return column_name # Otherwise, proceed to convert parts = column_name.split('/') month = parts[0].strip() year = parts[1].strip() # Clean year in case there are extra characters year = ''.join(filter(str.isdigit, year)) # Get month number from the dictionary month_number = month_dict.get(month, '00') # Default '00' if month is not found # Return formatted date string return f"{month_number}/{year}" new_df.columns = [convert_column_name(col) for col in new_df.columns] new_df.columns = pd.to_datetime(new_df.columns, errors='coerce') new_df.rename(columns={new_df.columns[0]: 'Rotulo'}, inplace=True) df_clean = new_df.copy() return df_clean # Cache the Prophet computation to avoid recomputing @st.cache_data def apply_prophet(df_clean): if df_clean.empty: st.error("DataFrame está vazio após o pré-processamento.") return pd.DataFrame() # Debugging: Check structure of df_clean #st.write("Estrutura do DataFrame df_clean:") #st.write(df_clean) # Criar um DataFrame vazio para armazenar todas as anomalias all_anomalies = pd.DataFrame() # Processar cada linha no DataFrame for index, row in df_clean.iterrows(): # Extract timestamp and value columns date_columns = [col for col in df_clean.columns if isinstance(col, pd.Timestamp)] data = pd.DataFrame({ 'ds': date_columns, 'y': row[date_columns].values }) # Debugging: Check the data passed into Prophet #st.write(f"Dados para Prophet - Grupo {row['Rotulo']}:") #st.write(data) # Remove rows where 'y' is zero or missing data = data[data['y'] > 0].dropna().reset_index(drop=True) # Ensure there's enough data for Prophet to run if data.empty or len(data) < 2: #st.write(f"Pular grupo {row['Rotulo']} por não ter observações suficientes.") continue try: # Create and fit the Prophet model model = Prophet(interval_width=0.95) model.fit(data) except ValueError as e: #st.write(f"Pular grupo {row['Rotulo']} devido ao erro: {e}") continue # Make future predictions future = model.make_future_dataframe(periods=12, freq='M') forecast = model.predict(future) # Add real values and calculate anomalies real_values = list(data['y']) + [None] * (len(forecast) - len(data)) forecast['real'] = real_values anomalies = forecast[(forecast['real'] < forecast['yhat_lower']) | (forecast['real'] > forecast['yhat_upper'])] # Debugging: Check the anomalies detected #st.write(f"Anomalias detectadas para o grupo {row['Rotulo']}:") #st.write(anomalies) # Add group label and append anomalies to all_anomalies DataFrame anomalies['group'] = row['Rotulo'] all_anomalies = pd.concat([all_anomalies, anomalies[['ds', 'real', 'group']]], ignore_index=True) # Return the dataframe of all anomalies st.write(f"Concluída a aplicação do modelo de série tempotal") st.write(all_anomalies.head()) all_anomalies.sort_values(by=['real'], ascending=False, inplace=True) all_anomalies['real'] = pd.to_numeric(all_anomalies['real'], errors='coerce') all_anomalies = all_anomalies[all_anomalies['real'] >= 10000000.00] all_anomalies = all_anomalies.astype(str) return all_anomalies # Initialize session states if 'all_anomalies' not in st.session_state: st.session_state['all_anomalies'] = pd.DataFrame() if 'history' not in st.session_state: st.session_state['history'] = [] tab1, tab2 = st.tabs(["Meta Prophet", "Microsoft TAPEX"]) # Interface para carregar arquivo uploaded_file = st.file_uploader("Carregue um arquivo CSV ou XLSX", type=['csv', 'xlsx']) with tab1: if uploaded_file: df = load_data(uploaded_file) df_clean = preprocess_data(df) if df_clean.empty: st.warning("Não há dados válidos para processar.") else: # Cache the Prophet results #if st.session_state['all_anomalies'].empty: #with st.spinner('Aplicando modelo de série temporal...'): #all_anomalies = apply_prophet(df_clean) #st.session_state['all_anomalies'] = all_anomalies # Cache the Prophet results if st.session_state['all_anomalies'].empty: all_anomalies = apply_prophet(df_clean) st.session_state['all_anomalies'] = all_anomalies with tab2: if 'all_anomalies' in st.session_state and not st.session_state['all_anomalies'].empty: user_question = st.text_input("Escreva sua questão aqui:", "") if user_question: bot_response = response(user_question, st.session_state['all_anomalies']) st.session_state['history'].append(('👤', user_question)) st.session_state['history'].append(('🤖', bot_response)) for sender, message in st.session_state['history']: st.markdown(f"**{sender} {message}**") if st.button("Limpar histórico"): st.session_state['history'] = [] else: st.warning("Por favor, processe os dados no Meta Prophet primeiro.")