Spaces:
Running
Running
import os | |
import shutil | |
from huggingface_hub import snapshot_download | |
import gradio as gr | |
from scripts.inference import inference_process | |
import argparse | |
# Download the repository contents into a directory | |
hallo_dir = snapshot_download(repo_id="fudan-generative-ai/hallo") | |
# Define the new directory path for the pretrained models | |
new_dir = 'pretrained_models' | |
# Ensure the new directory exists | |
os.makedirs(new_dir, exist_ok=True) | |
# Move all contents from the downloaded directory to the new directory | |
for filename in os.listdir(hallo_dir): | |
shutil.move(os.path.join(hallo_dir, filename), os.path.join(new_dir, filename)) | |
def run_inference(source_image, driving_audio, gr.Progress(track_tqdm=True)): | |
# Construct the argparse.Namespace object with all necessary attributes | |
args = argparse.Namespace( | |
config='configs/inference/default.yaml', # Adjust this path as necessary | |
source_image=source_image.name, | |
driving_audio=driving_audio.name, | |
output='output.mp4', # You might want to manage output paths dynamically | |
pose_weight=1.0, | |
face_weight=1.0, | |
lip_weight=1.0, | |
face_expand_ratio=1.2, | |
checkpoint=None # Adjust or set this according to your checkpointing strategy | |
) | |
# Call the imported function | |
inference_process(args) | |
# Return output or path to output | |
return 'output.mp4' # Modify based on your output handling | |
iface = gr.Interface( | |
fn=run_inference, | |
inputs=[gr.inputs.Image(type="file"), gr.inputs.Audio(type="file")], | |
outputs="text" | |
) | |
iface.launch() |