Spaces:
Running
on
T4
Running
on
T4
File size: 7,172 Bytes
9c20b4e 8bf1635 2e2148b 8bf1635 74e9bb4 8bf1635 9db5d78 5c2ba64 9c20b4e a9922ff 5c2ba64 9c20b4e 672cb3f 9c20b4e 5e89640 9c20b4e dc06293 311d9aa 5c2ba64 9c20b4e 07ea011 8a1ab06 9c20b4e 5c2ba64 9c20b4e 5c2ba64 da7d0fa 5c2ba64 dc06293 8a1ab06 dc06293 8a1ab06 dc06293 9db5d78 dc06293 9db5d78 dc06293 5c2ba64 9c20b4e 9db5d78 9c20b4e 8729c75 9c20b4e dc06293 9c20b4e fb76d6c 9c20b4e ba793e2 8a1ab06 da7d0fa 9c20b4e ffbd52c 9c20b4e 8a1ab06 9c20b4e 5c2ba64 9c20b4e 5c2ba64 9c20b4e 1a8723f 9c20b4e 1a8723f 9c20b4e 1a8723f 5c2ba64 74e9bb4 5c2ba64 cecf748 dc06293 9c20b4e 5c2ba64 672cb3f dc06293 2e2148b 9db5d78 dc06293 9db5d78 8a1ab06 9db5d78 8a1ab06 9db5d78 dc06293 8a1ab06 dc06293 5c2ba64 fb76d6c da7d0fa 5c2ba64 3cf1f43 dc06293 8034ef8 ef28f77 17dad6c ef28f77 17dad6c 8a1ab06 17dad6c ef28f77 9f31d5a 5c2ba64 5e89640 8034ef8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
"""
main.py
"""
# Standard library imports
import glob
import os
import time
from pathlib import Path
from tempfile import NamedTemporaryFile
from typing import List, Literal, Tuple, Optional
# Third-party imports
import gradio as gr
from loguru import logger
from pydantic import BaseModel
from pypdf import PdfReader
from pydub import AudioSegment
# Local imports
from prompts import SYSTEM_PROMPT
from utils import generate_script, generate_audio, parse_url
class DialogueItem(BaseModel):
"""A single dialogue item."""
speaker: Literal["Host (Jenna)", "Guest"]
text: str
class Dialogue(BaseModel):
"""The dialogue between the host and guest."""
scratchpad: str
name_of_guest: str
dialogue: List[DialogueItem]
def generate_podcast(
files: List[str],
url: Optional[str],
tone: Optional[str],
voice: Optional[str],
length: Optional[str],
language: str
) -> Tuple[str, str]:
"""Generate the audio and transcript from the PDFs and/or URL."""
text = ""
# Change language to the appropriate code
language_mapping = {
"English": "EN",
"Spanish": "ES",
"French": "FR",
"Chinese": "ZH",
"Japanese": "JP",
"Korean": "KR",
}
# Change voice to the appropriate code
voice_mapping = {
"Male": "Gary",
"Female": "Laura",
}
# Check if at least one input is provided
if not files and not url:
raise gr.Error("Please provide at least one PDF file or a URL.")
# Process PDFs if any
if files:
for file in files:
if not file.lower().endswith('.pdf'):
raise gr.Error(f"File {file} is not a PDF. Please upload only PDF files.")
try:
with Path(file).open("rb") as f:
reader = PdfReader(f)
text += "\n\n".join([page.extract_text() for page in reader.pages])
except Exception as e:
raise gr.Error(f"Error reading the PDF file {file}: {str(e)}")
# Process URL if provided
if url:
try:
url_text = parse_url(url)
text += "\n\n" + url_text
except ValueError as e:
raise gr.Error(str(e))
# Check total character count
if len(text) > 100000:
raise gr.Error("The total content is too long. Please ensure the combined text from PDFs and URL is fewer than ~100,000 characters.")
# Modify the system prompt based on the chosen tone and length
modified_system_prompt = SYSTEM_PROMPT
if tone:
modified_system_prompt += f"\n\nTONE: The tone of the podcast should be {tone}."
if length:
length_instructions = {
"Short (1-2 min)": "Keep the podcast brief, around 1-2 minutes long.",
"Medium (3-5 min)": "Aim for a moderate length, about 3-5 minutes.",
}
modified_system_prompt += f"\n\nLENGTH: {length_instructions[length]}"
if language:
modified_system_prompt += f"\n\nOUTPUT LANGUAGE <IMPORTANT>: The the podcast should be {language}."
# Call the LLM
llm_output = generate_script(modified_system_prompt, text, Dialogue)
logger.info(f"Generated dialogue: {llm_output}")
# Process the dialogue
audio_segments = []
transcript = ""
total_characters = 0
for line in llm_output.dialogue:
logger.info(f"Generating audio for {line.speaker}, {language} and {voice}: {line.text}")
if line.speaker == "Host (Jenna)":
speaker = f"**Jenna**: {line.text}"
else:
speaker = f"**{llm_output.name_of_guest}**: {line.text}"
transcript += speaker + "\n\n"
total_characters += len(line.text)
# Get audio file path
audio_file_path = generate_audio(line.text, line.speaker, language_mapping[language], voice_mapping[voice])
# Read the audio file into an AudioSegment
audio_segment = AudioSegment.from_file(audio_file_path)
audio_segments.append(audio_segment)
# Concatenate all audio segments
combined_audio = sum(audio_segments)
# Export the combined audio to a temporary file
temporary_directory = "./gradio_cached_examples/tmp/"
os.makedirs(temporary_directory, exist_ok=True)
temporary_file = NamedTemporaryFile(
dir=temporary_directory,
delete=False,
suffix=".mp3",
)
combined_audio.export(temporary_file.name, format="mp3")
# Delete any files in the temp directory that end with .mp3 and are over a day old
for file in glob.glob(f"{temporary_directory}*.mp3"):
if os.path.isfile(file) and time.time() - os.path.getmtime(file) > 24 * 60 * 60:
os.remove(file)
logger.info(f"Generated {total_characters} characters of audio")
return temporary_file.name, transcript
demo = gr.Interface(
title="Open NotebookLM",
description="Convert your PDFs into podcasts with open-source AI models (Llama 3.1 405B and MeloTTS). \n \n Note: Only the text content of the PDFs will be processed. Images and tables are not included. The total content should be no more than 100,000 characters due to the context length of Llama 3.1 405B.",
fn=generate_podcast,
inputs=[
gr.File(
label="1. π Upload your PDF(s)",
file_types=[".pdf"],
file_count="multiple"
),
gr.Textbox(
label="2. π Paste a URL (optional)",
placeholder="Enter a URL to include its content"
),
gr.Radio(
choices=["Fun", "Formal"],
label="3. π Choose the tone",
value="Fun"
),
gr.Radio(
choices=["Male", "Female"],
label="4. π Choose the guest's voice",
value="Female"
),
gr.Radio(
choices=["Short (1-2 min)", "Medium (3-5 min)"],
label="5. β±οΈ Choose the length",
value="Medium (3-5 min)"
),
gr.Dropdown(
choices=["English", "Spanish", "French", "Chinese", "Japanese", "Korean"],
value="English",
label="6. π Choose the language (Highly experimental, English is recommended)",
),
],
outputs=[
gr.Audio(label="Audio", format="mp3"),
gr.Markdown(label="Transcript"),
],
allow_flagging="never",
api_name="generate_podcast",
theme=gr.themes.Soft(),
concurrency_limit=3,
examples=[
[
[str(Path("examples/1310.4546v1.pdf"))],
"",
"Fun",
"Male",
"Medium (3-5 min)",
"English"
],
[
[],
"https://en.wikipedia.org/wiki/Hugging_Face",
"Fun",
"Male",
"Short (1-2 min)",
"English"
],
[
[],
"https://simple.wikipedia.org/wiki/Taylor_Swift",
"Fun",
"Female",
"Short (1-2 min)",
"English"
],
],
cache_examples=True,
examples_cache_dir="examples_cached"
)
if __name__ == "__main__":
demo.launch(show_api=True)
|