Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import os | |
import json | |
import datetime | |
from email.utils import parseaddr | |
import gradio as gr | |
import pandas as pd | |
import numpy as np | |
from datasets import load_dataset | |
from apscheduler.schedulers.background import BackgroundScheduler | |
from huggingface_hub import HfApi | |
# InfoStrings | |
from scorer import question_scorer | |
from content import format_warning, format_log, TITLE, INTRODUCTION_TEXT, CHANGELOG_TEXT, CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT | |
BALM_TOKEN = os.environ.get("BALM_TOKEN", None) | |
OWNER="balm" | |
SUBMISSION_DATASET = f"{OWNER}/submissions" | |
SPLIT="validation" #Change to test once we are ready to go | |
api = HfApi() | |
os.makedirs("scored", exist_ok=True) | |
# Display the results | |
eval_results = {} | |
for level in range(1, 4): | |
eval_results[level] = load_dataset(f"{OWNER}/BALM_ResultsLevel{level}", token=BALM_TOKEN, split=SPLIT) | |
eval_dataframe_1 = pd.DataFrame(eval_results[1].remove_columns("mail")) | |
eval_dataframe_2 = pd.DataFrame(eval_results[2].remove_columns("mail")) | |
eval_dataframe_3 = pd.DataFrame(eval_results[3].remove_columns("mail")) | |
# Gold answers | |
gold_results = {} | |
for level in range(1, 4): | |
level_dataset = load_dataset(f"{OWNER}/BALM", f"2023_level{level}", split=SPLIT, token=BALM_TOKEN) | |
gold_results[level] = {row["task_id"]: row["ground_truth"] for row in level_dataset} | |
def restart_space(): | |
api.restart_space(repo_id=f"{OWNER}/BALM_Leaderboard", token=BALM_TOKEN) | |
COLS = ["Model", "Score ⬆️", "Organisation"] | |
TYPES = ["str", "number", "str",] | |
def add_new_eval( | |
level_of_dev: str, | |
model: str, | |
path_to_file, | |
organisation: str, | |
mail: str, | |
): | |
level = int(level_of_dev.split(" ")[-1]) | |
# Very basic email parsing | |
_, parsed_mail = parseaddr(mail) | |
if not "@" in parsed_mail: | |
return format_warning("Please provide a valid email adress.") | |
print("Adding new eval") | |
# Check if the combination model/org already exists and prints a warning message if yes | |
if model.lower() in set(eval_results[level]["model"]) and organisation.lower() in set(eval_results[level]["organisation"]): | |
return format_warning("This model has been already submitted.") | |
# Save submitted file | |
api.upload_file( | |
repo_id=SUBMISSION_DATASET, | |
path_or_fileobj=path_to_file.name, | |
path_in_repo=f"{organisation}/{model}/level{level}_raw_{datetime.datetime.today()}.jsonl", | |
repo_type="dataset", | |
token=BALM_TOKEN | |
) | |
# Compute score | |
file_path = path_to_file.name | |
total_score = 0 | |
with open(f"scored/{organisation}_{model}.jsonl", "w") as scored_file: | |
with open(file_path, 'r') as f: | |
for line in f: | |
task = json.loads(line) | |
if "model_answer" not in task: | |
raise Exception("No model_answer key in the file provided") | |
answer = task["model_answer"] | |
task_id = task["task_id"] | |
score = question_scorer(task['model_answer'], gold_results[level][task_id]) | |
scored_file.write( | |
json.dumps({ | |
"id": task_id, | |
"model_answer": answer, | |
"score": score | |
}) + "\n" | |
) | |
total_score += score | |
# Save scored file | |
api.upload_file( | |
repo_id=SUBMISSION_DATASET, | |
path_or_fileobj=f"scored/{organisation}_{model}.jsonl", | |
path_in_repo=f"{organisation}/{model}/level{level}_scored_{datetime.datetime.today()}.jsonl", | |
repo_type="dataset", | |
token=BALM_TOKEN | |
) | |
# Actual submission | |
eval_entry = { | |
"model": model, | |
"score": total_score, | |
"organisation": organisation, | |
"mail": mail, | |
} | |
eval_results[level] = eval_results[level].add_item(eval_entry) | |
# TODO: change split to "test" once we have the actual results | |
eval_results[level].push_to_hub(f"{OWNER}/BALM_ResultsLevel{level}", token=BALM_TOKEN, split=SPLIT) | |
return format_log(f"Model {model} submitted by {organisation} successfully. \nPlease refresh the leaderboard, and wait for up to an hour to see the score displayed") | |
def refresh(): | |
eval_results = {} | |
for level in range(1, 4): | |
eval_results[level] = load_dataset(f"{OWNER}/BALM_ResultsLevel{level}", use_auth_token=BALM_TOKEN, split=SPLIT) | |
eval_dataframe_1 = pd.DataFrame(eval_results[1].remove_columns("mail")) | |
eval_dataframe_2 = pd.DataFrame(eval_results[2].remove_columns("mail")) | |
eval_dataframe_3 = pd.DataFrame(eval_results[3].remove_columns("mail")) | |
return eval_dataframe_1, eval_dataframe_2, eval_dataframe_3 | |
def upload_file(files): | |
file_paths = [file.name for file in files] | |
return file_paths | |
demo = gr.Blocks() | |
with demo: | |
gr.HTML(TITLE) | |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Accordion("📙 Citation", open=False): | |
citation_button = gr.Textbox( | |
value=CITATION_BUTTON_TEXT, | |
label=CITATION_BUTTON_LABEL, | |
elem_id="citation-button", | |
).style(show_copy_button=True) | |
with gr.Column(): | |
with gr.Accordion("✨ CHANGELOG", open=False): | |
changelog = gr.Markdown(CHANGELOG_TEXT, elem_id="changelog-text") | |
with gr.Tab("Results: Level 1"): | |
leaderboard_table_1 = gr.components.Dataframe( | |
value=eval_dataframe_1, headers=COLS, datatype=TYPES, interactive=False, | |
) | |
with gr.Tab("Results: Level 2"): | |
leaderboard_table_2 = gr.components.Dataframe( | |
value=eval_dataframe_2, headers=COLS, datatype=TYPES, interactive=False, | |
) | |
with gr.Tab("Results: Level 3"): | |
leaderboard_table_3 = gr.components.Dataframe( | |
value=eval_dataframe_3, headers=COLS, datatype=TYPES, interactive=False, | |
) | |
refresh_button = gr.Button("Refresh") | |
refresh_button.click( | |
refresh, | |
inputs=[], | |
outputs=[ | |
leaderboard_table_1, | |
leaderboard_table_2, | |
leaderboard_table_3, | |
], | |
) | |
with gr.Accordion("Submit a new model for evaluation"): | |
with gr.Row(): | |
with gr.Column(): | |
level_of_test = gr.Radio(["Level 1", "Level 2", "Level 3"], value="Level 1", label="{split} set level") | |
model_name_textbox = gr.Textbox(label="Model name") | |
file_output = gr.File() | |
with gr.Column(): | |
organisation = gr.Textbox(label="Organisation") | |
mail = gr.Textbox(label="Contact email") | |
submit_button = gr.Button("Submit Eval") | |
submission_result = gr.Markdown() | |
submit_button.click( | |
add_new_eval, | |
[ | |
level_of_test, | |
model_name_textbox, | |
file_output, | |
organisation, | |
], | |
submission_result, | |
) | |
scheduler = BackgroundScheduler() | |
scheduler.add_job(restart_space, "interval", seconds=3600) | |
scheduler.start() | |
demo.launch() | |