leaderboard / app.py
Clémentine
Updated system to connect the different repos
3d87820
raw
history blame
7.2 kB
import os
import json
import datetime
from email.utils import parseaddr
import gradio as gr
import pandas as pd
import numpy as np
from datasets import load_dataset
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import HfApi
# InfoStrings
from scorer import question_scorer
from content import format_warning, format_log, TITLE, INTRODUCTION_TEXT, CHANGELOG_TEXT, CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT
BALM_TOKEN = os.environ.get("BALM_TOKEN", None)
OWNER="balm"
SUBMISSION_DATASET = f"{OWNER}/submissions"
SPLIT="validation" #Change to test once we are ready to go
api = HfApi()
os.makedirs("scored", exist_ok=True)
# Display the results
eval_results = {}
for level in range(1, 4):
eval_results[level] = load_dataset(f"{OWNER}/BALM_ResultsLevel{level}", token=BALM_TOKEN, split=SPLIT)
eval_dataframe_1 = pd.DataFrame(eval_results[1].remove_columns("mail"))
eval_dataframe_2 = pd.DataFrame(eval_results[2].remove_columns("mail"))
eval_dataframe_3 = pd.DataFrame(eval_results[3].remove_columns("mail"))
# Gold answers
gold_results = {}
for level in range(1, 4):
level_dataset = load_dataset(f"{OWNER}/BALM", f"2023_level{level}", split=SPLIT, token=BALM_TOKEN)
gold_results[level] = {row["task_id"]: row["ground_truth"] for row in level_dataset}
def restart_space():
api.restart_space(repo_id=f"{OWNER}/BALM_Leaderboard", token=BALM_TOKEN)
COLS = ["Model", "Score ⬆️", "Organisation"]
TYPES = ["str", "number", "str",]
def add_new_eval(
level_of_dev: str,
model: str,
path_to_file,
organisation: str,
mail: str,
):
level = int(level_of_dev.split(" ")[-1])
# Very basic email parsing
_, parsed_mail = parseaddr(mail)
if not "@" in parsed_mail:
return format_warning("Please provide a valid email adress.")
print("Adding new eval")
# Check if the combination model/org already exists and prints a warning message if yes
if model.lower() in set(eval_results[level]["model"]) and organisation.lower() in set(eval_results[level]["organisation"]):
return format_warning("This model has been already submitted.")
# Save submitted file
api.upload_file(
repo_id=SUBMISSION_DATASET,
path_or_fileobj=path_to_file.name,
path_in_repo=f"{organisation}/{model}/level{level}_raw_{datetime.datetime.today()}.jsonl",
repo_type="dataset",
token=BALM_TOKEN
)
# Compute score
file_path = path_to_file.name
total_score = 0
with open(f"scored/{organisation}_{model}.jsonl", "w") as scored_file:
with open(file_path, 'r') as f:
for line in f:
task = json.loads(line)
if "model_answer" not in task:
raise Exception("No model_answer key in the file provided")
answer = task["model_answer"]
task_id = task["task_id"]
score = question_scorer(task['model_answer'], gold_results[level][task_id])
scored_file.write(
json.dumps({
"id": task_id,
"model_answer": answer,
"score": score
}) + "\n"
)
total_score += score
# Save scored file
api.upload_file(
repo_id=SUBMISSION_DATASET,
path_or_fileobj=f"scored/{organisation}_{model}.jsonl",
path_in_repo=f"{organisation}/{model}/level{level}_scored_{datetime.datetime.today()}.jsonl",
repo_type="dataset",
token=BALM_TOKEN
)
# Actual submission
eval_entry = {
"model": model,
"score": total_score,
"organisation": organisation,
"mail": mail,
}
eval_results[level] = eval_results[level].add_item(eval_entry)
# TODO: change split to "test" once we have the actual results
eval_results[level].push_to_hub(f"{OWNER}/BALM_ResultsLevel{level}", token=BALM_TOKEN, split=SPLIT)
return format_log(f"Model {model} submitted by {organisation} successfully. \nPlease refresh the leaderboard, and wait for up to an hour to see the score displayed")
def refresh():
eval_results = {}
for level in range(1, 4):
eval_results[level] = load_dataset(f"{OWNER}/BALM_ResultsLevel{level}", use_auth_token=BALM_TOKEN, split=SPLIT)
eval_dataframe_1 = pd.DataFrame(eval_results[1].remove_columns("mail"))
eval_dataframe_2 = pd.DataFrame(eval_results[2].remove_columns("mail"))
eval_dataframe_3 = pd.DataFrame(eval_results[3].remove_columns("mail"))
return eval_dataframe_1, eval_dataframe_2, eval_dataframe_3
def upload_file(files):
file_paths = [file.name for file in files]
return file_paths
demo = gr.Blocks()
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Row():
with gr.Column():
with gr.Accordion("📙 Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
elem_id="citation-button",
).style(show_copy_button=True)
with gr.Column():
with gr.Accordion("✨ CHANGELOG", open=False):
changelog = gr.Markdown(CHANGELOG_TEXT, elem_id="changelog-text")
with gr.Tab("Results: Level 1"):
leaderboard_table_1 = gr.components.Dataframe(
value=eval_dataframe_1, headers=COLS, datatype=TYPES, interactive=False,
)
with gr.Tab("Results: Level 2"):
leaderboard_table_2 = gr.components.Dataframe(
value=eval_dataframe_2, headers=COLS, datatype=TYPES, interactive=False,
)
with gr.Tab("Results: Level 3"):
leaderboard_table_3 = gr.components.Dataframe(
value=eval_dataframe_3, headers=COLS, datatype=TYPES, interactive=False,
)
refresh_button = gr.Button("Refresh")
refresh_button.click(
refresh,
inputs=[],
outputs=[
leaderboard_table_1,
leaderboard_table_2,
leaderboard_table_3,
],
)
with gr.Accordion("Submit a new model for evaluation"):
with gr.Row():
with gr.Column():
level_of_test = gr.Radio(["Level 1", "Level 2", "Level 3"], value="Level 1", label="{split} set level")
model_name_textbox = gr.Textbox(label="Model name")
file_output = gr.File()
with gr.Column():
organisation = gr.Textbox(label="Organisation")
mail = gr.Textbox(label="Contact email")
submit_button = gr.Button("Submit Eval")
submission_result = gr.Markdown()
submit_button.click(
add_new_eval,
[
level_of_test,
model_name_textbox,
file_output,
organisation,
mail
],
submission_result,
)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=3600)
scheduler.start()
demo.launch()