gaviego commited on
Commit
0d94b00
0 Parent(s):
Files changed (5) hide show
  1. .gitignore +162 -0
  2. app.py +24 -0
  3. mnist.pth +0 -0
  4. model.py +15 -0
  5. train.py +53 -0
.gitignore ADDED
@@ -0,0 +1,162 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Byte-compiled / optimized / DLL files
2
+ __pycache__/
3
+ *.py[cod]
4
+ *$py.class
5
+
6
+ # C extensions
7
+ *.so
8
+
9
+ # Distribution / packaging
10
+ .Python
11
+ build/
12
+ develop-eggs/
13
+ dist/
14
+ downloads/
15
+ eggs/
16
+ .eggs/
17
+ lib/
18
+ lib64/
19
+ parts/
20
+ sdist/
21
+ var/
22
+ wheels/
23
+ share/python-wheels/
24
+ *.egg-info/
25
+ .installed.cfg
26
+ *.egg
27
+ MANIFEST
28
+
29
+ # PyInstaller
30
+ # Usually these files are written by a python script from a template
31
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
32
+ *.manifest
33
+ *.spec
34
+
35
+ # Installer logs
36
+ pip-log.txt
37
+ pip-delete-this-directory.txt
38
+
39
+ # Unit test / coverage reports
40
+ htmlcov/
41
+ .tox/
42
+ .nox/
43
+ .coverage
44
+ .coverage.*
45
+ .cache
46
+ nosetests.xml
47
+ coverage.xml
48
+ *.cover
49
+ *.py,cover
50
+ .hypothesis/
51
+ .pytest_cache/
52
+ cover/
53
+
54
+ # Translations
55
+ *.mo
56
+ *.pot
57
+
58
+ # Django stuff:
59
+ *.log
60
+ local_settings.py
61
+ db.sqlite3
62
+ db.sqlite3-journal
63
+
64
+ # Flask stuff:
65
+ instance/
66
+ .webassets-cache
67
+
68
+ # Scrapy stuff:
69
+ .scrapy
70
+
71
+ # Sphinx documentation
72
+ docs/_build/
73
+
74
+ # PyBuilder
75
+ .pybuilder/
76
+ target/
77
+
78
+ # Jupyter Notebook
79
+ .ipynb_checkpoints
80
+
81
+ # IPython
82
+ profile_default/
83
+ ipython_config.py
84
+
85
+ # pyenv
86
+ # For a library or package, you might want to ignore these files since the code is
87
+ # intended to run in multiple environments; otherwise, check them in:
88
+ # .python-version
89
+
90
+ # pipenv
91
+ # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
92
+ # However, in case of collaboration, if having platform-specific dependencies or dependencies
93
+ # having no cross-platform support, pipenv may install dependencies that don't work, or not
94
+ # install all needed dependencies.
95
+ #Pipfile.lock
96
+
97
+ # poetry
98
+ # Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
99
+ # This is especially recommended for binary packages to ensure reproducibility, and is more
100
+ # commonly ignored for libraries.
101
+ # https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
102
+ #poetry.lock
103
+
104
+ # pdm
105
+ # Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
106
+ #pdm.lock
107
+ # pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
108
+ # in version control.
109
+ # https://pdm.fming.dev/#use-with-ide
110
+ .pdm.toml
111
+
112
+ # PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
113
+ __pypackages__/
114
+
115
+ # Celery stuff
116
+ celerybeat-schedule
117
+ celerybeat.pid
118
+
119
+ # SageMath parsed files
120
+ *.sage.py
121
+
122
+ # Environments
123
+ .env
124
+ .venv
125
+ env/
126
+ venv/
127
+ ENV/
128
+ env.bak/
129
+ venv.bak/
130
+
131
+ # Spyder project settings
132
+ .spyderproject
133
+ .spyproject
134
+
135
+ # Rope project settings
136
+ .ropeproject
137
+
138
+ # mkdocs documentation
139
+ /site
140
+
141
+ # mypy
142
+ .mypy_cache/
143
+ .dmypy.json
144
+ dmypy.json
145
+
146
+ # Pyre type checker
147
+ .pyre/
148
+
149
+ # pytype static type analyzer
150
+ .pytype/
151
+
152
+ # Cython debug symbols
153
+ cython_debug/
154
+
155
+ # PyCharm
156
+ # JetBrains specific template is maintained in a separate JetBrains.gitignore that can
157
+ # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
158
+ # and can be added to the global gitignore or merged into this file. For a more nuclear
159
+ # option (not recommended) you can uncomment the following to ignore the entire idea folder.
160
+ #.idea/
161
+
162
+ data
app.py ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from PIL import Image
3
+ import numpy as np
4
+ import torch
5
+ import torch.nn as nn
6
+ import model
7
+
8
+ net = torch.load('mnist.pth')
9
+ net.eval()
10
+
11
+ def predict(img):
12
+ arr = np.array(img) / 255 # Assuming img is in the range [0, 255]
13
+ arr = np.expand_dims(arr, axis=0) # Add batch dimension
14
+ arr = torch.from_numpy(arr).float() # Convert to PyTorch tensor
15
+ output = net(arr)
16
+ topk_values, topk_indices = torch.topk(output, 2) # Get the top 2 classes
17
+ return [str(k) for k in topk_indices[0].tolist()]
18
+
19
+
20
+ sp = gr.Sketchpad(shape=(28, 28))
21
+
22
+ gr.Interface(fn=predict,
23
+ inputs=sp,
24
+ outputs=['label','label']).launch()
mnist.pth ADDED
Binary file (440 kB). View file
 
model.py ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ # Define the model
4
+ class Net(nn.Module):
5
+ def __init__(self):
6
+ super(Net, self).__init__()
7
+ self.fc1 = nn.Linear(28*28, 128) # MNIST images are 28x28
8
+ self.fc2 = nn.Linear(128, 64)
9
+ self.fc3 = nn.Linear(64, 10) # There are 10 classes (0 through 9)
10
+
11
+ def forward(self, x):
12
+ x = x.view(x.shape[0], -1) # Flatten the input
13
+ x = torch.relu(self.fc1(x))
14
+ x = torch.relu(self.fc2(x))
15
+ return self.fc3(x)
train.py ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.optim as optim
4
+ import torchvision
5
+ import torchvision.transforms as transforms
6
+ import model
7
+ # Load the MNIST dataset
8
+ train_set = torchvision.datasets.MNIST(root='./data', train=True,
9
+ download=True, transform=transforms.ToTensor())
10
+ test_set = torchvision.datasets.MNIST(root='./data', train=False,
11
+ download=True, transform=transforms.ToTensor())
12
+
13
+ train_loader = torch.utils.data.DataLoader(train_set, batch_size=32,
14
+ shuffle=True)
15
+ test_loader = torch.utils.data.DataLoader(test_set, batch_size=32,
16
+ shuffle=False)
17
+
18
+
19
+
20
+ net = model.Net()
21
+
22
+ # Use CrossEntropyLoss for multi-class classification
23
+ criterion = nn.CrossEntropyLoss()
24
+
25
+ optimizer = optim.SGD(net.parameters(), lr=0.01)
26
+
27
+ # Train the model
28
+ for epoch in range(50): # Loop over the dataset multiple times
29
+ for i, data in enumerate(train_loader, 0):
30
+ inputs, labels = data
31
+
32
+ optimizer.zero_grad()
33
+ outputs = net(inputs)
34
+ loss = criterion(outputs, labels)
35
+ loss.backward()
36
+ optimizer.step()
37
+
38
+ print('Finished Training')
39
+
40
+ # Test the model
41
+ correct = 0
42
+ total = 0
43
+ with torch.no_grad():
44
+ for data in test_loader:
45
+ images, labels = data
46
+ outputs = net(images)
47
+ _, predicted = torch.max(outputs.data, 1)
48
+ total += labels.size(0)
49
+ correct += (predicted == labels).sum().item()
50
+
51
+ print(f'Accuracy of the network on test images: {100 * correct / total}%')
52
+
53
+ torch.save(net,'mnist.pth')