convolution training
Browse files- train_conv.py +48 -0
train_conv.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.optim as optim
|
4 |
+
from torchvision import datasets, transforms
|
5 |
+
from models import NetConv
|
6 |
+
|
7 |
+
|
8 |
+
# Training settings
|
9 |
+
batch_size = 64
|
10 |
+
test_batch_size = 1000
|
11 |
+
epochs = 10
|
12 |
+
lr = 0.01
|
13 |
+
momentum = 0.5
|
14 |
+
seed = 1
|
15 |
+
log_interval = 10
|
16 |
+
|
17 |
+
torch.manual_seed(seed)
|
18 |
+
|
19 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
20 |
+
|
21 |
+
kwargs = {'num_workers': 1, 'pin_memory': True} if torch.cuda.is_available() else {}
|
22 |
+
|
23 |
+
# MNIST Dataset
|
24 |
+
train_dataset = datasets.MNIST(root='./data/', train=True, transform=transforms.ToTensor(), download=True)
|
25 |
+
test_dataset = datasets.MNIST(root='./data/', train=False, transform=transforms.ToTensor())
|
26 |
+
|
27 |
+
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True, **kwargs)
|
28 |
+
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=test_batch_size, shuffle=False, **kwargs)
|
29 |
+
|
30 |
+
model = NetConv().to(device)
|
31 |
+
optimizer = optim.SGD(model.parameters(), lr=lr, momentum=momentum)
|
32 |
+
|
33 |
+
# Training loop
|
34 |
+
for epoch in range(1, epochs + 1):
|
35 |
+
model.train()
|
36 |
+
for batch_idx, (data, target) in enumerate(train_loader):
|
37 |
+
data, target = data.to(device), target.to(device)
|
38 |
+
optimizer.zero_grad()
|
39 |
+
output = model(data)
|
40 |
+
loss = F.nll_loss(output, target)
|
41 |
+
loss.backward()
|
42 |
+
optimizer.step()
|
43 |
+
if batch_idx % log_interval == 0:
|
44 |
+
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
|
45 |
+
epoch, batch_idx * len(data), len(train_loader.dataset),
|
46 |
+
100. * batch_idx / len(train_loader), loss.item()))
|
47 |
+
|
48 |
+
torch.save(model,'mnist_conv.pth')
|