import gradio as gr from PIL import Image import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from models import NetConv net_conv = torch.load('mnist_conv.pth') net_conv.eval() def predict(img): arr = np.array(img) / 255 # Assuming img is in the range [0, 255] arr.reshape(28,28) arr = np.expand_dims(arr, axis=0) # Add batch dimension arr = np.expand_dims(arr, axis=0) # Add batch dimension arr = torch.from_numpy(arr).float() # Convert to PyTorch tensor output = net_conv(arr) topk_values, topk_indices = torch.topk(output, 2) # Get the top 2 classes return [str(k) for k in topk_indices[0].tolist()] with gr.Blocks() as iface: gr.Markdown("# MNIST + Gradio End to End") gr.HTML("Shows end to end MNIST training with Gradio interface") with gr.Row(): with gr.Column(): sp = gr.Sketchpad(shape=(28, 28)) with gr.Row(): with gr.Column(): pred_button = gr.Button("Predict") with gr.Column(): clear = gr.Button("Clear") with gr.Column(): label1 = gr.Label(label='1st Pred') label2 = gr.Label(label='2nd Pred') pred_button.click(predict, inputs=sp, outputs=[label1,label2]) clear.click(lambda: None, None, sp, queue=False) iface.launch()