Mood-Muse / model_evaluation.py
victoriaono's picture
initial commit
1cc6224
raw
history blame
6.06 kB
import pandas as pd
from datasets import Dataset
from transformers import pipeline, GPT2Tokenizer
from sentence_transformers import SentenceTransformer, util
# Define paths and models
filename = "output_topic_details.txt"
retrieval_model_name = 'output/sentence-transformer-finetuned/' #using a prefine-tuned model
gpt2_model_name = "gpt2"
csv_file_path = "train_dataset.csv"
output_csv_file_path = "updated_train_dataset.csv"
val_csv_file_path = "val_dataset.csv"
output_val_csv_file_path = "updated_val_csv.csv"
tokenizer = GPT2Tokenizer.from_pretrained(gpt2_model_name)
# Initialize models
try:
retrieval_model = SentenceTransformer(retrieval_model_name)
gpt_model = pipeline("text-generation", model=gpt2_model_name)
print("Models loaded successfully.")
except Exception as e:
print(f"Failed to load models: {e}")
def load_and_preprocess_text(filename):
"""
Load and preprocess text data from a file.
Parameters:
- filename (str): Path to the text file.
Returns:
- list[str]: A list of preprocessed text segments.
"""
try:
with open(filename, 'r', encoding='utf-8') as file:
segments = [line.strip() for line in file if line.strip()]
print("Text loaded and preprocessed successfully.")
return segments
except Exception as e:
print(f"Failed to load or preprocess text: {e}")
return []
segments = load_and_preprocess_text(filename)
def find_relevant_segment(user_query, segments):
"""
Find the most relevant text segment based on a user query.
Parameters:
- user_query (str): The user's query.
- segments (list[str]): List of text segments to search within.
Returns:
- str: The most relevant text segment.
"""
try:
query_embedding = retrieval_model.encode(user_query)
segment_embeddings = retrieval_model.encode(segments)
similarities = util.pytorch_cos_sim(query_embedding, segment_embeddings)[0]
best_idx = similarities.argmax()
return segments[best_idx]
except Exception as e:
print(f"Error finding relevant segment: {e}")
return ""
def generate_response(question):
"""
Generate a response to a given question by finding a relevant text segment and
using it to generate a more complete answer.
Parameters:
- question (str): The user's question.
Returns:
- str: Generated response.
"""
relevant_segment = find_relevant_segment(question, segments)
return generate_response_with_context(question, relevant_segment)
def generate_response_with_context(user_query, relevant_segment):
"""
Generate a response based on a user query and a relevant segment.
Parameters:
- user_query (str): The user's query.
- relevant_segment (str): A relevant fact or detail.
Returns:
- str: Formatted response incorporating the relevant segment.
"""
try:
prompt = f"Thank you for your question! Here is an additional fact about your topic: {relevant_segment}"
max_tokens = len(tokenizer(prompt)['input_ids']) + 50
response = gpt_model(prompt, max_length=max_tokens, temperature=0.25)[0]['generated_text']
return clean_up_response(response, relevant_segment)
except Exception as e:
print(f"Error generating response: {e}")
return ""
def clean_up_response(response, segment):
"""
Clean up the generated response to ensure it is tidy and presentable.
Parameters:
- response (str): The initial response generated by the model.
- segment (str): The segment used to generate the response.
Returns:
- str: A cleaned and formatted response.
"""
sentences = response.split('.')
cleaned_sentences = [sentence.strip() for sentence in sentences if sentence.strip() and sentence.strip() not in segment]
cleaned_response = '. '.join(cleaned_sentences).strip()
if cleaned_response and not cleaned_response.endswith((".", "!", "?")):
cleaned_response += "."
return cleaned_response
def process_dataset(csv_file_path, output_csv_file_path):
"""
Process the dataset by generating responses and evaluating their similarities.
Parameters:
- csv_file_path (str): Path to the CSV file containing the dataset.
- output_csv_file_path (str): Path where the updated dataset will be saved.
Prints:
- Path to the saved results and the average similarity score.
"""
df = pd.read_csv(csv_file_path)
dataset = Dataset.from_pandas(df)
updated_dataset = add_model_answers(dataset)
similarities = evaluate_similarity(updated_dataset)
updated_dataset = updated_dataset.add_column("similarity", similarities)
results_df = updated_dataset.to_pandas()
results_df.to_csv(output_csv_file_path, index=False)
average_similarity = sum(similarities) / len(similarities) if similarities else 0
print(f"Results saved to {output_csv_file_path}")
print(f"Average Similarity Score: {average_similarity:.3f}")
def add_model_answers(dataset):
"""
Add generated answers to the dataset.
Parameters:
- dataset (datasets.Dataset): The Hugging Face dataset object.
Returns:
- datasets.Dataset: Updated dataset with added answers.
"""
answers = [generate_response(q) for q in dataset['Question']]
dataset = dataset.add_column("Answer", answers)
return dataset
def evaluate_similarity(dataset):
"""
Evaluate the similarity of generated answers against ground truth answers.
Parameters:
- dataset (datasets.Dataset): The dataset containing both answers and ground truths.
Returns:
- list[float]: List of similarity scores.
"""
similarities = [util.pytorch_cos_sim(retrieval_model.encode(ans), retrieval_model.encode(gt))[0][0].item()
for ans, gt in zip(dataset['Answer'], dataset['GroundTruth'])]
return similarities
# Process datasets
process_dataset(csv_file_path, output_csv_file_path)
process_dataset(val_csv_file_path, output_val_csv_file_path)