File size: 24,113 Bytes
d6585f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
#
# Pyserini: Reproducible IR research with sparse and dense representations
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

import os
import shutil
import tarfile
import unittest
from random import randint
from urllib.request import urlretrieve
import json
import heapq

from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import MultinomialNB

from pyserini import analysis, search
from pyserini.index.lucene import IndexReader
from pyserini.pyclass import JString
from pyserini.vectorizer import BM25Vectorizer, TfidfVectorizer


class TestIndexUtils(unittest.TestCase):
    def setUp(self):
        # Download pre-built CACM index built using Lucene 9; append a random value to avoid filename clashes.
        r = randint(0, 10000000)
        self.collection_url = 'https://github.com/castorini/anserini-data/raw/master/CACM/lucene9-index.cacm.tar.gz'
        self.tarball_name = 'lucene-index.cacm-{}.tar.gz'.format(r)
        self.index_dir = 'index{}/'.format(r)

        _, _ = urlretrieve(self.collection_url, self.tarball_name)

        tarball = tarfile.open(self.tarball_name)
        tarball.extractall(self.index_dir)
        tarball.close()

        self.index_path = os.path.join(self.index_dir, 'lucene9-index.cacm')
        self.searcher = search.LuceneSearcher(self.index_path)
        self.index_reader = IndexReader(self.index_path)

        self.temp_folders = []

        # The current directory depends on if you're running inside an IDE or from command line.
        curdir = os.getcwd()
        if curdir.endswith('tests'):
            self.emoji_corpus_path = '../tests/resources/sample_collection_json_emoji'
        else:
            self.emoji_corpus_path = 'tests/resources/sample_collection_json_emoji'

    # See https://github.com/castorini/pyserini/issues/770
    # tldr -- a longstanding issue about whether we need the `encode` in `JString(my_str.encode('utf-8'))`.
    # As it turns out, the solution is to remove the `JString` wrapping, which also has performance benefits as well.
    # See:
    # - https://github.com/castorini/pyserini/pull/862
    # - https://github.com/castorini/pyserini/issues/841
    def test_doc_vector_emoji_test(self):
        index_dir = 'temp_index'
        self.temp_folders.append(index_dir)
        cmd1 = f'python -m pyserini.index.lucene -collection JsonCollection ' + \
               f'-generator DefaultLuceneDocumentGenerator ' + \
               f'-threads 1 -input {self.emoji_corpus_path} -index {index_dir} -storeDocvectors'
        _ = os.system(cmd1)
        temp_index_reader = IndexReader(index_dir)

        df, cf = temp_index_reader.get_term_counts('emoji')
        self.assertEqual(df, 1)
        self.assertEqual(cf, 1)

        df, cf = temp_index_reader.get_term_counts('🙂')
        self.assertEqual(df, 1)
        self.assertEqual(cf, 1)

        doc_vector = temp_index_reader.get_document_vector('doc1')
        self.assertEqual(doc_vector['emoji'], 1)
        self.assertEqual(doc_vector['🙂'], 1)
        self.assertEqual(doc_vector['😀'], 1)

    def test_tfidf_vectorizer_train(self):
        vectorizer = TfidfVectorizer(self.index_path, min_df=5)
        train_docs = ['CACM-0239', 'CACM-0440', 'CACM-3168', 'CACM-3169']
        train_labels = [1, 1, 0, 0]
        test_docs = ['CACM-0634', 'CACM-3134']
        train_vectors = vectorizer.get_vectors(train_docs)
        test_vectors = vectorizer.get_vectors(test_docs)
        clf = MultinomialNB()
        clf.fit(train_vectors, train_labels)
        pred = clf.predict_proba(test_vectors)
        self.assertAlmostEqual(0.49975694, pred[0][0], places=8)
        self.assertAlmostEqual(0.50024306, pred[0][1], places=8)
        self.assertAlmostEqual(0.51837413, pred[1][0], places=8)
        self.assertAlmostEqual(0.48162587, pred[1][1], places=8)

    def test_bm25_vectorizer_train(self):
        vectorizer = BM25Vectorizer(self.index_path, min_df=5)
        train_docs = ['CACM-0239', 'CACM-0440', 'CACM-3168', 'CACM-3169']
        train_labels = [1, 1, 0, 0]
        test_docs = ['CACM-0634', 'CACM-3134']
        train_vectors = vectorizer.get_vectors(train_docs)
        test_vectors = vectorizer.get_vectors(test_docs)
        clf = LogisticRegression()
        clf.fit(train_vectors, train_labels)
        pred = clf.predict_proba(test_vectors)
        self.assertAlmostEqual(0.4629749, pred[0][0], places=8)
        self.assertAlmostEqual(0.5370251, pred[0][1], places=8)
        self.assertAlmostEqual(0.48288416, pred[1][0], places=8)
        self.assertAlmostEqual(0.51711584, pred[1][1], places=8)

    def test_tfidf_vectorizer(self):
        vectorizer = TfidfVectorizer(self.index_path, min_df=5)
        result = vectorizer.get_vectors(['CACM-0239', 'CACM-0440'], norm=None)
        self.assertAlmostEqual(result[0, 190], 2.907369334264736, places=8)
        self.assertAlmostEqual(result[1, 391], 0.07516490235060004, places=8)

    def test_bm25_vectorizer(self):
        vectorizer = BM25Vectorizer(self.index_path, min_df=5)
        result = vectorizer.get_vectors(['CACM-0239', 'CACM-0440'], norm=None)
        self.assertAlmostEqual(result[0, 190], 1.7513844966888428, places=8)
        self.assertAlmostEqual(result[1, 391], 0.03765463829040527, places=8)

    def test_vectorizer_query(self):
        vectorizer = BM25Vectorizer(self.index_path, min_df=5)
        result = vectorizer.get_query_vector('this is a query to test query vector')
        self.assertEqual(result[0, 2703], 2)
        self.assertEqual(result[0, 3078], 1)
        self.assertEqual(result[0, 3204], 1)

    def test_terms_count(self):
        # We're going to iterate through the index and make sure we have the correct number of terms.
        self.assertEqual(sum(1 for x in self.index_reader.terms()), 14363)

    def test_terms_contents(self):
        # We're going to examine the first two index terms to make sure the statistics are correct.
        iterator = self.index_reader.terms()
        index_term = next(iterator)
        self.assertEqual(index_term.term, '0')
        self.assertEqual(index_term.df, 19)
        self.assertEqual(index_term.cf, 30)

        index_term = next(iterator)
        self.assertEqual(index_term.term, '0,1')
        self.assertEqual(index_term.df, 1)
        self.assertEqual(index_term.cf, 1)

    def test_analyze(self):
        self.assertEqual(' '.join(self.index_reader.analyze('retrieval')), 'retriev')
        self.assertEqual(' '.join(self.index_reader.analyze('rapid retrieval, space economy')),
                         'rapid retriev space economi')
        tokenizer = analysis.get_lucene_analyzer(stemming=False)
        self.assertEqual(' '.join(self.index_reader.analyze('retrieval', analyzer=tokenizer)), 'retrieval')
        self.assertEqual(' '.join(self.index_reader.analyze('rapid retrieval, space economy', analyzer=tokenizer)),
                         'rapid retrieval space economy')
        # Test utf encoding:
        self.assertEqual(self.index_reader.analyze('zoölogy')[0], 'zoölog')
        self.assertEqual(self.index_reader.analyze('zoölogy', analyzer=tokenizer)[0], 'zoölogy')

    def test_term_stats(self):
        df, cf = self.index_reader.get_term_counts('retrieval')
        self.assertEqual(df, 138)
        self.assertEqual(cf, 275)

        df, cf = self.index_reader.get_term_counts('information retrieval')
        self.assertEqual(df, 74)
        self.assertEqual(cf, None)

        df_no_stem, cf_no_stem = self.index_reader.get_term_counts('retrieval', analyzer=None)
        # 'retrieval' does not occur as a stemmed word, only 'retriev' does.
        self.assertEqual(df_no_stem, 0)
        self.assertEqual(cf_no_stem, 0)

        df_no_stopword, cf_no_stopword = self.index_reader.get_term_counts('on', analyzer=None)
        self.assertEqual(df_no_stopword, 326)
        self.assertEqual(cf_no_stopword, 443)

        # Should gracefully handle non-existent term.
        df, cf = self.index_reader.get_term_counts('sdgsc')
        self.assertEqual(df, 0)
        self.assertEqual(cf, 0)

    def test_postings1(self):
        term = 'retrieval'
        postings = list(self.index_reader.get_postings_list(term))
        self.assertEqual(len(postings), 138)

        self.assertEqual(postings[0].docid, 238)
        self.assertEqual(self.index_reader.convert_internal_docid_to_collection_docid(postings[0].docid), 'CACM-0239')
        self.assertEqual(postings[0].tf, 1)
        self.assertEqual(len(postings[0].positions), 1)

        self.assertEqual(postings[-1].docid, 3168)
        self.assertEqual(self.index_reader.convert_internal_docid_to_collection_docid(postings[-1].docid), 'CACM-3169')
        self.assertEqual(postings[-1].tf, 1)
        self.assertEqual(len(postings[-1].positions), 1)

    def test_postings2(self):
        self.assertIsNone(self.index_reader.get_postings_list('asdf'))

        postings = list(self.index_reader.get_postings_list('retrieval'))
        self.assertEqual(len(postings), 138)

        # If we don't analyze, then we can't find the postings list:
        self.assertIsNone(self.index_reader.get_postings_list('retrieval', analyzer=None))

        # Supply the analyzed form directly, and we're good:
        postings = list(self.index_reader.get_postings_list('retriev', analyzer=None))
        self.assertEqual(len(postings), 138)
        postings = list(self.index_reader.get_postings_list(self.index_reader.analyze('retrieval')[0], analyzer=None))
        self.assertEqual(len(postings), 138)

        # Test utf encoding:
        self.assertEqual(self.index_reader.get_postings_list('zoölogy'), None)
        self.assertEqual(self.index_reader.get_postings_list('zoölogy', analyzer=None), None)
        self.assertEqual(self.index_reader.get_postings_list('zoölogy'), None)

    def test_doc_vector(self):
        doc_vector = self.index_reader.get_document_vector('CACM-3134')
        self.assertEqual(len(doc_vector), 94)
        self.assertEqual(doc_vector['inform'], 8)
        self.assertEqual(doc_vector['retriev'], 7)

    def test_doc_vector_invalid(self):
        self.assertTrue(self.index_reader.get_document_vector('foo') is None)

    def test_doc_vector_matches_index(self):
        # From the document vector, look up the term frequency of "information".
        doc_vector = self.index_reader.get_document_vector('CACM-3134')
        self.assertEqual(doc_vector['inform'], 8)

        # Now look up the postings list for "information".
        term = 'information'
        postings_list = list(self.index_reader.get_postings_list(term))

        for i in range(len(postings_list)):
            # Go through the postings and find the matching document.
            if self.index_reader.convert_internal_docid_to_collection_docid(postings_list[i].docid) == 'CACM-3134':
                # The tf values should match.
                self.assertEqual(postings_list[i].tf, 8)

    def test_term_position(self):
        term_positions = self.index_reader.get_term_positions('CACM-3134')
        self.assertEqual(len(term_positions), 94)
        self.assertEqual(term_positions['inform'], [7,24,36,46,60,112,121,159])
        self.assertEqual(term_positions['retriev'], [10,20,44,132,160,164,172])

    def test_term_position_invalid(self):
        self.assertTrue(self.index_reader.get_term_positions('foo') is None)

    def test_term_position_matches_index(self):
        # From the term positions mapping, look up the position list of "information".
        term_positions = self.index_reader.get_term_positions('CACM-3134')
        self.assertEqual(term_positions['inform'], [7,24,36,46,60,112,121,159])

        # Now look up the postings list for "information".
        term = 'information'
        postings_list = list(self.index_reader.get_postings_list(term))

        for i in range(len(postings_list)):
            # Go through the postings and find the matching document.
            if self.index_reader.convert_internal_docid_to_collection_docid(postings_list[i].docid) == 'CACM-3134':
                # The position list should match.
                self.assertEqual(postings_list[i].positions, [7, 24, 36, 46, 60, 112, 121, 159])

    def test_doc_invalid(self):
        self.assertTrue(self.index_reader.doc('foo') is None)
        self.assertTrue(self.index_reader.doc_contents('foo') is None)
        self.assertTrue(self.index_reader.doc_raw('foo') is None)
        self.assertTrue(self.index_reader.doc_by_field('foo', 'bar') is None)

    def test_doc_raw(self):
        raw = self.index_reader.doc('CACM-3134').raw()
        self.assertTrue(isinstance(raw, str))
        lines = raw.splitlines()
        self.assertEqual(len(lines), 55)
        # Note that the raw document contents will still have HTML tags.
        self.assertEqual(lines[0], '<html>')
        self.assertEqual(lines[4], 'The Use of Normal Multiplication Tables')
        self.assertEqual(lines[29], 'rapid retrieval, space economy')

        # Now that we've verified the 'raw', check that alternative ways of fetching give the same results.
        self.assertEqual(raw, self.index_reader.doc_raw('CACM-3134'))
        self.assertEqual(raw, self.index_reader.doc('CACM-3134').raw())
        self.assertEqual(raw, self.index_reader.doc('CACM-3134').get('raw'))
        self.assertEqual(raw, self.index_reader.doc('CACM-3134').lucene_document().get('raw'))

    def test_doc_contents(self):
        contents = self.index_reader.doc('CACM-3134').contents()
        self.assertTrue(isinstance(contents, str))
        lines = contents.splitlines()
        self.assertEqual(len(lines), 48)
        self.assertEqual(lines[0], 'The Use of Normal Multiplication Tables')
        self.assertEqual(lines[47], '3134\t5\t3134')

        # Now that we've verified the 'raw', check that alternative ways of fetching give the same results.
        self.assertEqual(contents, self.index_reader.doc_contents('CACM-3134'))
        self.assertEqual(contents, self.index_reader.doc('CACM-3134').contents())
        self.assertEqual(contents, self.index_reader.doc('CACM-3134').get('contents'))
        self.assertEqual(contents, self.index_reader.doc('CACM-3134').lucene_document().get('contents'))

    def test_doc_by_field(self):
        self.assertEqual(self.index_reader.doc('CACM-3134').docid(),
                         self.index_reader.doc_by_field('id', 'CACM-3134').docid())

    def test_bm25_weight(self):
        self.assertAlmostEqual(
            self.index_reader.compute_bm25_term_weight('CACM-3134', 'inform', analyzer=None, k1=1.2, b=0.75),
            1.925014, places=5)
        self.assertAlmostEqual(
            self.index_reader.compute_bm25_term_weight('CACM-3134', 'information', k1=1.2, b=0.75),
            1.925014, places=5)
        self.assertAlmostEqual(
            self.index_reader.compute_bm25_term_weight('CACM-3134', 'retriev', analyzer=None, k1=1.2, b=0.75),
            2.496352, places=5)
        self.assertAlmostEqual(
            self.index_reader.compute_bm25_term_weight('CACM-3134', 'retrieval', k1=1.2, b=0.75),
            2.496352, places=5)

        self.assertAlmostEqual(
            self.index_reader.compute_bm25_term_weight('CACM-3134', 'inform', analyzer=None),
            2.06514, places=5)
        self.assertAlmostEqual(
            self.index_reader.compute_bm25_term_weight('CACM-3134', 'information'),
            2.06514, places=5)
        self.assertAlmostEqual(
            self.index_reader.compute_bm25_term_weight('CACM-3134', 'retriev', analyzer=None),
            2.70038, places=5)
        self.assertAlmostEqual(
            self.index_reader.compute_bm25_term_weight('CACM-3134', 'retrieval'),
            2.70038, places=5)

        self.assertAlmostEqual(self.index_reader.compute_bm25_term_weight('CACM-3134', 'fox', analyzer=None),
                               0., places=5)
        self.assertAlmostEqual(self.index_reader.compute_bm25_term_weight('CACM-3134', 'fox'), 0., places=5)

    def test_docid_converstion(self):
        self.assertEqual(self.index_reader.convert_internal_docid_to_collection_docid(1), 'CACM-0002')
        self.assertEqual(self.index_reader.convert_collection_docid_to_internal_docid('CACM-0002'), 1)
        self.assertEqual(self.index_reader.convert_internal_docid_to_collection_docid(1000), 'CACM-1001')
        self.assertEqual(self.index_reader.convert_collection_docid_to_internal_docid('CACM-1001'), 1000)

    def test_query_doc_score_default(self):
        queries = ['information retrieval', 'databases']

        for query in queries:
            hits = self.searcher.search(query)

            # We're going to verify that the score of each hit is about the same as the output of
            # compute_query_document_score
            for i in range(0, len(hits)):
                self.assertAlmostEqual(hits[i].score,
                                       self.index_reader.compute_query_document_score(hits[i].docid, query), places=4)

    def test_query_doc_score_custom_similarity(self):
        custom_bm25 = search.LuceneSimilarities.bm25(0.8, 0.2)
        queries = ['information retrieval', 'databases']
        self.searcher.set_bm25(0.8, 0.2)

        for query in queries:
            hits = self.searcher.search(query)

            # We're going to verify that the score of each hit is about the same as the output of
            # compute_query_document_score
            for i in range(0, len(hits)):
                self.assertAlmostEqual(hits[i].score,
                                       self.index_reader.compute_query_document_score(
                                           hits[i].docid, query, similarity=custom_bm25), places=4)

        custom_qld = search.LuceneSimilarities.qld(500)
        self.searcher.set_qld(500)

        for query in queries:
            hits = self.searcher.search(query)

            # We're going to verify that the score of each hit is about the same as the output of
            # compute_query_document_score
            for i in range(0, len(hits)):
                self.assertAlmostEqual(hits[i].score,
                                       self.index_reader.compute_query_document_score(
                                           hits[i].docid, query, similarity=custom_qld), places=4)

    def test_index_stats(self):
        self.assertEqual(3204, self.index_reader.stats()['documents'])
        self.assertEqual(14363, self.index_reader.stats()['unique_terms'])

    def test_jstring_encoding(self):
        # When using pyjnius in a version prior 1.3.0, creating a JString with non-ASCII characters resulted in a
        # failure. This test simply ensures that a compatible version of pyjnius is used. More details can be found in
        # the discussion here: https://github.com/castorini/pyserini/issues/770
        JString('zoölogy')

    def test_dump_documents_BM25(self):
        file_path = 'collections/cacm_documents_bm25_dump.jsonl'
        self.index_reader.dump_documents_BM25(file_path)
        dump_file = open(file_path, 'r')

        num_lines = sum(1 for line in dump_file)
        dump_file.seek(0)
        assert num_lines == self.index_reader.stats()['documents']

        def compare_searcher(query):
            """Comparing searching with LuceneSearcher to brute-force searching through documents in dump
            The scores should match.

            Parameters
            ----------
            query : str
                The query for search.
            """
            # Search through documents BM25 dump
            query_terms = self.index_reader.analyze(query, analyzer=analysis.get_lucene_analyzer())
            heap = [] # heapq implements a min-heap, we can invert the values to have a max-heap

            for line in dump_file:
                doc = json.loads(line)
                score = 0
                for term in query_terms:
                    if term in doc['vector']:
                        score += doc['vector'][term]
                heapq.heappush(heap, (-1*score, doc['id']))
            dump_file.seek(0)

            # Using LuceneSearcher instead
            hits = self.searcher.search(query)

            for i in range(0, 10):
                top = heapq.heappop(heap)
                self.assertEqual(hits[i].docid, top[1])
                self.assertAlmostEqual(hits[i].score, -1*top[0], places=3)

        compare_searcher('I am interested in articles written either by Prieve or Udo Pooch')
        compare_searcher('Performance evaluation and modelling of computer systems')
        compare_searcher('Addressing schemes for resources in networks; resource addressing in network operating systems')

        dump_file.close()
        os.remove(file_path)

    def test_quantize_weights(self):
        dump_file_path = 'collections/cacm_documents_bm25_dump.jsonl'
        quantized_file_path = 'collections/cacm_documents_bm25_dump_quantized.jsonl'
        self.index_reader.dump_documents_BM25(dump_file_path)
        self.index_reader.quantize_weights(dump_file_path, quantized_file_path)

        quantized_weights_file = open(quantized_file_path, 'r')

        num_lines = sum(1 for line in quantized_weights_file)
        quantized_weights_file.seek(0)
        assert num_lines == self.index_reader.stats()['documents']

        def compare_searcher_quantized(query, tolerance=1):
            """Comparing searching with LuceneSearcher to brute-force searching through documents in dump
            If the weights are quantized the scores will not match but the rankings should still roughly match.

            Parameters
            ----------
            query : str
                The query for search.
            tolerance : int
                Number of places within which rankings should match i.e. if the ranking of some document with
                searching through documents in the dump is 2, then with a tolerance of 1 the ranking of the same
                document with Lucene searcher should be between 1-3.
            """
            query_terms = self.index_reader.analyze(query, analyzer=analysis.get_lucene_analyzer())
            heap = []
            for line in quantized_weights_file:
                doc = json.loads(line)
                score = 0
                for term in query_terms:
                    if term in doc['vector']:
                        score += doc['vector'][term]
                heapq.heappush(heap, (-1*score, doc['id']))
            quantized_weights_file.seek(0)

            hits = self.searcher.search(query)

            for i in range(0, 10):
                top = heapq.heappop(heap)
                match_within_tolerance = False
                for j in range(tolerance+1):
                    match_within_tolerance = (i-j >= 0 and hits[i-j].docid == top[1]) or (hits[i+j].docid == top[1])
                    if match_within_tolerance:
                        break
                self.assertEqual(match_within_tolerance, True)

        compare_searcher_quantized('I am interested in articles written either by Prieve or Udo Pooch')
        compare_searcher_quantized('Performance evaluation and modelling of computer systems')
        compare_searcher_quantized('Addressing schemes for resources in networks; resource addressing in network operating systems')

        quantized_weights_file.close()
        os.remove(quantized_file_path)

    def tearDown(self):
        os.remove(self.tarball_name)
        shutil.rmtree(self.index_dir)
        for f in self.temp_folders:
            shutil.rmtree(f)


if __name__ == '__main__':
    unittest.main()