Spaces:
Runtime error
Runtime error
File size: 24,113 Bytes
d6585f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 |
#
# Pyserini: Reproducible IR research with sparse and dense representations
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
import shutil
import tarfile
import unittest
from random import randint
from urllib.request import urlretrieve
import json
import heapq
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import MultinomialNB
from pyserini import analysis, search
from pyserini.index.lucene import IndexReader
from pyserini.pyclass import JString
from pyserini.vectorizer import BM25Vectorizer, TfidfVectorizer
class TestIndexUtils(unittest.TestCase):
def setUp(self):
# Download pre-built CACM index built using Lucene 9; append a random value to avoid filename clashes.
r = randint(0, 10000000)
self.collection_url = 'https://github.com/castorini/anserini-data/raw/master/CACM/lucene9-index.cacm.tar.gz'
self.tarball_name = 'lucene-index.cacm-{}.tar.gz'.format(r)
self.index_dir = 'index{}/'.format(r)
_, _ = urlretrieve(self.collection_url, self.tarball_name)
tarball = tarfile.open(self.tarball_name)
tarball.extractall(self.index_dir)
tarball.close()
self.index_path = os.path.join(self.index_dir, 'lucene9-index.cacm')
self.searcher = search.LuceneSearcher(self.index_path)
self.index_reader = IndexReader(self.index_path)
self.temp_folders = []
# The current directory depends on if you're running inside an IDE or from command line.
curdir = os.getcwd()
if curdir.endswith('tests'):
self.emoji_corpus_path = '../tests/resources/sample_collection_json_emoji'
else:
self.emoji_corpus_path = 'tests/resources/sample_collection_json_emoji'
# See https://github.com/castorini/pyserini/issues/770
# tldr -- a longstanding issue about whether we need the `encode` in `JString(my_str.encode('utf-8'))`.
# As it turns out, the solution is to remove the `JString` wrapping, which also has performance benefits as well.
# See:
# - https://github.com/castorini/pyserini/pull/862
# - https://github.com/castorini/pyserini/issues/841
def test_doc_vector_emoji_test(self):
index_dir = 'temp_index'
self.temp_folders.append(index_dir)
cmd1 = f'python -m pyserini.index.lucene -collection JsonCollection ' + \
f'-generator DefaultLuceneDocumentGenerator ' + \
f'-threads 1 -input {self.emoji_corpus_path} -index {index_dir} -storeDocvectors'
_ = os.system(cmd1)
temp_index_reader = IndexReader(index_dir)
df, cf = temp_index_reader.get_term_counts('emoji')
self.assertEqual(df, 1)
self.assertEqual(cf, 1)
df, cf = temp_index_reader.get_term_counts('🙂')
self.assertEqual(df, 1)
self.assertEqual(cf, 1)
doc_vector = temp_index_reader.get_document_vector('doc1')
self.assertEqual(doc_vector['emoji'], 1)
self.assertEqual(doc_vector['🙂'], 1)
self.assertEqual(doc_vector['😀'], 1)
def test_tfidf_vectorizer_train(self):
vectorizer = TfidfVectorizer(self.index_path, min_df=5)
train_docs = ['CACM-0239', 'CACM-0440', 'CACM-3168', 'CACM-3169']
train_labels = [1, 1, 0, 0]
test_docs = ['CACM-0634', 'CACM-3134']
train_vectors = vectorizer.get_vectors(train_docs)
test_vectors = vectorizer.get_vectors(test_docs)
clf = MultinomialNB()
clf.fit(train_vectors, train_labels)
pred = clf.predict_proba(test_vectors)
self.assertAlmostEqual(0.49975694, pred[0][0], places=8)
self.assertAlmostEqual(0.50024306, pred[0][1], places=8)
self.assertAlmostEqual(0.51837413, pred[1][0], places=8)
self.assertAlmostEqual(0.48162587, pred[1][1], places=8)
def test_bm25_vectorizer_train(self):
vectorizer = BM25Vectorizer(self.index_path, min_df=5)
train_docs = ['CACM-0239', 'CACM-0440', 'CACM-3168', 'CACM-3169']
train_labels = [1, 1, 0, 0]
test_docs = ['CACM-0634', 'CACM-3134']
train_vectors = vectorizer.get_vectors(train_docs)
test_vectors = vectorizer.get_vectors(test_docs)
clf = LogisticRegression()
clf.fit(train_vectors, train_labels)
pred = clf.predict_proba(test_vectors)
self.assertAlmostEqual(0.4629749, pred[0][0], places=8)
self.assertAlmostEqual(0.5370251, pred[0][1], places=8)
self.assertAlmostEqual(0.48288416, pred[1][0], places=8)
self.assertAlmostEqual(0.51711584, pred[1][1], places=8)
def test_tfidf_vectorizer(self):
vectorizer = TfidfVectorizer(self.index_path, min_df=5)
result = vectorizer.get_vectors(['CACM-0239', 'CACM-0440'], norm=None)
self.assertAlmostEqual(result[0, 190], 2.907369334264736, places=8)
self.assertAlmostEqual(result[1, 391], 0.07516490235060004, places=8)
def test_bm25_vectorizer(self):
vectorizer = BM25Vectorizer(self.index_path, min_df=5)
result = vectorizer.get_vectors(['CACM-0239', 'CACM-0440'], norm=None)
self.assertAlmostEqual(result[0, 190], 1.7513844966888428, places=8)
self.assertAlmostEqual(result[1, 391], 0.03765463829040527, places=8)
def test_vectorizer_query(self):
vectorizer = BM25Vectorizer(self.index_path, min_df=5)
result = vectorizer.get_query_vector('this is a query to test query vector')
self.assertEqual(result[0, 2703], 2)
self.assertEqual(result[0, 3078], 1)
self.assertEqual(result[0, 3204], 1)
def test_terms_count(self):
# We're going to iterate through the index and make sure we have the correct number of terms.
self.assertEqual(sum(1 for x in self.index_reader.terms()), 14363)
def test_terms_contents(self):
# We're going to examine the first two index terms to make sure the statistics are correct.
iterator = self.index_reader.terms()
index_term = next(iterator)
self.assertEqual(index_term.term, '0')
self.assertEqual(index_term.df, 19)
self.assertEqual(index_term.cf, 30)
index_term = next(iterator)
self.assertEqual(index_term.term, '0,1')
self.assertEqual(index_term.df, 1)
self.assertEqual(index_term.cf, 1)
def test_analyze(self):
self.assertEqual(' '.join(self.index_reader.analyze('retrieval')), 'retriev')
self.assertEqual(' '.join(self.index_reader.analyze('rapid retrieval, space economy')),
'rapid retriev space economi')
tokenizer = analysis.get_lucene_analyzer(stemming=False)
self.assertEqual(' '.join(self.index_reader.analyze('retrieval', analyzer=tokenizer)), 'retrieval')
self.assertEqual(' '.join(self.index_reader.analyze('rapid retrieval, space economy', analyzer=tokenizer)),
'rapid retrieval space economy')
# Test utf encoding:
self.assertEqual(self.index_reader.analyze('zoölogy')[0], 'zoölog')
self.assertEqual(self.index_reader.analyze('zoölogy', analyzer=tokenizer)[0], 'zoölogy')
def test_term_stats(self):
df, cf = self.index_reader.get_term_counts('retrieval')
self.assertEqual(df, 138)
self.assertEqual(cf, 275)
df, cf = self.index_reader.get_term_counts('information retrieval')
self.assertEqual(df, 74)
self.assertEqual(cf, None)
df_no_stem, cf_no_stem = self.index_reader.get_term_counts('retrieval', analyzer=None)
# 'retrieval' does not occur as a stemmed word, only 'retriev' does.
self.assertEqual(df_no_stem, 0)
self.assertEqual(cf_no_stem, 0)
df_no_stopword, cf_no_stopword = self.index_reader.get_term_counts('on', analyzer=None)
self.assertEqual(df_no_stopword, 326)
self.assertEqual(cf_no_stopword, 443)
# Should gracefully handle non-existent term.
df, cf = self.index_reader.get_term_counts('sdgsc')
self.assertEqual(df, 0)
self.assertEqual(cf, 0)
def test_postings1(self):
term = 'retrieval'
postings = list(self.index_reader.get_postings_list(term))
self.assertEqual(len(postings), 138)
self.assertEqual(postings[0].docid, 238)
self.assertEqual(self.index_reader.convert_internal_docid_to_collection_docid(postings[0].docid), 'CACM-0239')
self.assertEqual(postings[0].tf, 1)
self.assertEqual(len(postings[0].positions), 1)
self.assertEqual(postings[-1].docid, 3168)
self.assertEqual(self.index_reader.convert_internal_docid_to_collection_docid(postings[-1].docid), 'CACM-3169')
self.assertEqual(postings[-1].tf, 1)
self.assertEqual(len(postings[-1].positions), 1)
def test_postings2(self):
self.assertIsNone(self.index_reader.get_postings_list('asdf'))
postings = list(self.index_reader.get_postings_list('retrieval'))
self.assertEqual(len(postings), 138)
# If we don't analyze, then we can't find the postings list:
self.assertIsNone(self.index_reader.get_postings_list('retrieval', analyzer=None))
# Supply the analyzed form directly, and we're good:
postings = list(self.index_reader.get_postings_list('retriev', analyzer=None))
self.assertEqual(len(postings), 138)
postings = list(self.index_reader.get_postings_list(self.index_reader.analyze('retrieval')[0], analyzer=None))
self.assertEqual(len(postings), 138)
# Test utf encoding:
self.assertEqual(self.index_reader.get_postings_list('zoölogy'), None)
self.assertEqual(self.index_reader.get_postings_list('zoölogy', analyzer=None), None)
self.assertEqual(self.index_reader.get_postings_list('zoölogy'), None)
def test_doc_vector(self):
doc_vector = self.index_reader.get_document_vector('CACM-3134')
self.assertEqual(len(doc_vector), 94)
self.assertEqual(doc_vector['inform'], 8)
self.assertEqual(doc_vector['retriev'], 7)
def test_doc_vector_invalid(self):
self.assertTrue(self.index_reader.get_document_vector('foo') is None)
def test_doc_vector_matches_index(self):
# From the document vector, look up the term frequency of "information".
doc_vector = self.index_reader.get_document_vector('CACM-3134')
self.assertEqual(doc_vector['inform'], 8)
# Now look up the postings list for "information".
term = 'information'
postings_list = list(self.index_reader.get_postings_list(term))
for i in range(len(postings_list)):
# Go through the postings and find the matching document.
if self.index_reader.convert_internal_docid_to_collection_docid(postings_list[i].docid) == 'CACM-3134':
# The tf values should match.
self.assertEqual(postings_list[i].tf, 8)
def test_term_position(self):
term_positions = self.index_reader.get_term_positions('CACM-3134')
self.assertEqual(len(term_positions), 94)
self.assertEqual(term_positions['inform'], [7,24,36,46,60,112,121,159])
self.assertEqual(term_positions['retriev'], [10,20,44,132,160,164,172])
def test_term_position_invalid(self):
self.assertTrue(self.index_reader.get_term_positions('foo') is None)
def test_term_position_matches_index(self):
# From the term positions mapping, look up the position list of "information".
term_positions = self.index_reader.get_term_positions('CACM-3134')
self.assertEqual(term_positions['inform'], [7,24,36,46,60,112,121,159])
# Now look up the postings list for "information".
term = 'information'
postings_list = list(self.index_reader.get_postings_list(term))
for i in range(len(postings_list)):
# Go through the postings and find the matching document.
if self.index_reader.convert_internal_docid_to_collection_docid(postings_list[i].docid) == 'CACM-3134':
# The position list should match.
self.assertEqual(postings_list[i].positions, [7, 24, 36, 46, 60, 112, 121, 159])
def test_doc_invalid(self):
self.assertTrue(self.index_reader.doc('foo') is None)
self.assertTrue(self.index_reader.doc_contents('foo') is None)
self.assertTrue(self.index_reader.doc_raw('foo') is None)
self.assertTrue(self.index_reader.doc_by_field('foo', 'bar') is None)
def test_doc_raw(self):
raw = self.index_reader.doc('CACM-3134').raw()
self.assertTrue(isinstance(raw, str))
lines = raw.splitlines()
self.assertEqual(len(lines), 55)
# Note that the raw document contents will still have HTML tags.
self.assertEqual(lines[0], '<html>')
self.assertEqual(lines[4], 'The Use of Normal Multiplication Tables')
self.assertEqual(lines[29], 'rapid retrieval, space economy')
# Now that we've verified the 'raw', check that alternative ways of fetching give the same results.
self.assertEqual(raw, self.index_reader.doc_raw('CACM-3134'))
self.assertEqual(raw, self.index_reader.doc('CACM-3134').raw())
self.assertEqual(raw, self.index_reader.doc('CACM-3134').get('raw'))
self.assertEqual(raw, self.index_reader.doc('CACM-3134').lucene_document().get('raw'))
def test_doc_contents(self):
contents = self.index_reader.doc('CACM-3134').contents()
self.assertTrue(isinstance(contents, str))
lines = contents.splitlines()
self.assertEqual(len(lines), 48)
self.assertEqual(lines[0], 'The Use of Normal Multiplication Tables')
self.assertEqual(lines[47], '3134\t5\t3134')
# Now that we've verified the 'raw', check that alternative ways of fetching give the same results.
self.assertEqual(contents, self.index_reader.doc_contents('CACM-3134'))
self.assertEqual(contents, self.index_reader.doc('CACM-3134').contents())
self.assertEqual(contents, self.index_reader.doc('CACM-3134').get('contents'))
self.assertEqual(contents, self.index_reader.doc('CACM-3134').lucene_document().get('contents'))
def test_doc_by_field(self):
self.assertEqual(self.index_reader.doc('CACM-3134').docid(),
self.index_reader.doc_by_field('id', 'CACM-3134').docid())
def test_bm25_weight(self):
self.assertAlmostEqual(
self.index_reader.compute_bm25_term_weight('CACM-3134', 'inform', analyzer=None, k1=1.2, b=0.75),
1.925014, places=5)
self.assertAlmostEqual(
self.index_reader.compute_bm25_term_weight('CACM-3134', 'information', k1=1.2, b=0.75),
1.925014, places=5)
self.assertAlmostEqual(
self.index_reader.compute_bm25_term_weight('CACM-3134', 'retriev', analyzer=None, k1=1.2, b=0.75),
2.496352, places=5)
self.assertAlmostEqual(
self.index_reader.compute_bm25_term_weight('CACM-3134', 'retrieval', k1=1.2, b=0.75),
2.496352, places=5)
self.assertAlmostEqual(
self.index_reader.compute_bm25_term_weight('CACM-3134', 'inform', analyzer=None),
2.06514, places=5)
self.assertAlmostEqual(
self.index_reader.compute_bm25_term_weight('CACM-3134', 'information'),
2.06514, places=5)
self.assertAlmostEqual(
self.index_reader.compute_bm25_term_weight('CACM-3134', 'retriev', analyzer=None),
2.70038, places=5)
self.assertAlmostEqual(
self.index_reader.compute_bm25_term_weight('CACM-3134', 'retrieval'),
2.70038, places=5)
self.assertAlmostEqual(self.index_reader.compute_bm25_term_weight('CACM-3134', 'fox', analyzer=None),
0., places=5)
self.assertAlmostEqual(self.index_reader.compute_bm25_term_weight('CACM-3134', 'fox'), 0., places=5)
def test_docid_converstion(self):
self.assertEqual(self.index_reader.convert_internal_docid_to_collection_docid(1), 'CACM-0002')
self.assertEqual(self.index_reader.convert_collection_docid_to_internal_docid('CACM-0002'), 1)
self.assertEqual(self.index_reader.convert_internal_docid_to_collection_docid(1000), 'CACM-1001')
self.assertEqual(self.index_reader.convert_collection_docid_to_internal_docid('CACM-1001'), 1000)
def test_query_doc_score_default(self):
queries = ['information retrieval', 'databases']
for query in queries:
hits = self.searcher.search(query)
# We're going to verify that the score of each hit is about the same as the output of
# compute_query_document_score
for i in range(0, len(hits)):
self.assertAlmostEqual(hits[i].score,
self.index_reader.compute_query_document_score(hits[i].docid, query), places=4)
def test_query_doc_score_custom_similarity(self):
custom_bm25 = search.LuceneSimilarities.bm25(0.8, 0.2)
queries = ['information retrieval', 'databases']
self.searcher.set_bm25(0.8, 0.2)
for query in queries:
hits = self.searcher.search(query)
# We're going to verify that the score of each hit is about the same as the output of
# compute_query_document_score
for i in range(0, len(hits)):
self.assertAlmostEqual(hits[i].score,
self.index_reader.compute_query_document_score(
hits[i].docid, query, similarity=custom_bm25), places=4)
custom_qld = search.LuceneSimilarities.qld(500)
self.searcher.set_qld(500)
for query in queries:
hits = self.searcher.search(query)
# We're going to verify that the score of each hit is about the same as the output of
# compute_query_document_score
for i in range(0, len(hits)):
self.assertAlmostEqual(hits[i].score,
self.index_reader.compute_query_document_score(
hits[i].docid, query, similarity=custom_qld), places=4)
def test_index_stats(self):
self.assertEqual(3204, self.index_reader.stats()['documents'])
self.assertEqual(14363, self.index_reader.stats()['unique_terms'])
def test_jstring_encoding(self):
# When using pyjnius in a version prior 1.3.0, creating a JString with non-ASCII characters resulted in a
# failure. This test simply ensures that a compatible version of pyjnius is used. More details can be found in
# the discussion here: https://github.com/castorini/pyserini/issues/770
JString('zoölogy')
def test_dump_documents_BM25(self):
file_path = 'collections/cacm_documents_bm25_dump.jsonl'
self.index_reader.dump_documents_BM25(file_path)
dump_file = open(file_path, 'r')
num_lines = sum(1 for line in dump_file)
dump_file.seek(0)
assert num_lines == self.index_reader.stats()['documents']
def compare_searcher(query):
"""Comparing searching with LuceneSearcher to brute-force searching through documents in dump
The scores should match.
Parameters
----------
query : str
The query for search.
"""
# Search through documents BM25 dump
query_terms = self.index_reader.analyze(query, analyzer=analysis.get_lucene_analyzer())
heap = [] # heapq implements a min-heap, we can invert the values to have a max-heap
for line in dump_file:
doc = json.loads(line)
score = 0
for term in query_terms:
if term in doc['vector']:
score += doc['vector'][term]
heapq.heappush(heap, (-1*score, doc['id']))
dump_file.seek(0)
# Using LuceneSearcher instead
hits = self.searcher.search(query)
for i in range(0, 10):
top = heapq.heappop(heap)
self.assertEqual(hits[i].docid, top[1])
self.assertAlmostEqual(hits[i].score, -1*top[0], places=3)
compare_searcher('I am interested in articles written either by Prieve or Udo Pooch')
compare_searcher('Performance evaluation and modelling of computer systems')
compare_searcher('Addressing schemes for resources in networks; resource addressing in network operating systems')
dump_file.close()
os.remove(file_path)
def test_quantize_weights(self):
dump_file_path = 'collections/cacm_documents_bm25_dump.jsonl'
quantized_file_path = 'collections/cacm_documents_bm25_dump_quantized.jsonl'
self.index_reader.dump_documents_BM25(dump_file_path)
self.index_reader.quantize_weights(dump_file_path, quantized_file_path)
quantized_weights_file = open(quantized_file_path, 'r')
num_lines = sum(1 for line in quantized_weights_file)
quantized_weights_file.seek(0)
assert num_lines == self.index_reader.stats()['documents']
def compare_searcher_quantized(query, tolerance=1):
"""Comparing searching with LuceneSearcher to brute-force searching through documents in dump
If the weights are quantized the scores will not match but the rankings should still roughly match.
Parameters
----------
query : str
The query for search.
tolerance : int
Number of places within which rankings should match i.e. if the ranking of some document with
searching through documents in the dump is 2, then with a tolerance of 1 the ranking of the same
document with Lucene searcher should be between 1-3.
"""
query_terms = self.index_reader.analyze(query, analyzer=analysis.get_lucene_analyzer())
heap = []
for line in quantized_weights_file:
doc = json.loads(line)
score = 0
for term in query_terms:
if term in doc['vector']:
score += doc['vector'][term]
heapq.heappush(heap, (-1*score, doc['id']))
quantized_weights_file.seek(0)
hits = self.searcher.search(query)
for i in range(0, 10):
top = heapq.heappop(heap)
match_within_tolerance = False
for j in range(tolerance+1):
match_within_tolerance = (i-j >= 0 and hits[i-j].docid == top[1]) or (hits[i+j].docid == top[1])
if match_within_tolerance:
break
self.assertEqual(match_within_tolerance, True)
compare_searcher_quantized('I am interested in articles written either by Prieve or Udo Pooch')
compare_searcher_quantized('Performance evaluation and modelling of computer systems')
compare_searcher_quantized('Addressing schemes for resources in networks; resource addressing in network operating systems')
quantized_weights_file.close()
os.remove(quantized_file_path)
def tearDown(self):
os.remove(self.tarball_name)
shutil.rmtree(self.index_dir)
for f in self.temp_folders:
shutil.rmtree(f)
if __name__ == '__main__':
unittest.main()
|