Spaces:
Runtime error
Runtime error
File size: 31,546 Bytes
d6585f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 |
#
# Pyserini: Reproducible IR research with sparse and dense representations
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import unittest
from transformers import BertTokenizer, T5Tokenizer, AutoTokenizer
from pyserini.analysis import Analyzer, get_lucene_analyzer
class TestTokenization(unittest.TestCase):
def setUp(self):
pass
def test_bert_base_uncased_demo(self):
# https://huggingface.co/transformers/tokenizer_summary.html
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
tokens = tokenizer.tokenize('I have a new GPU!')
self.assertEqual(['i', 'have', 'a', 'new', 'gp', '##u', '!'], tokens)
def test_bert_base_uncased_en_book_examples(self):
# These are examples used in the ptr4tr book
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
tokens = tokenizer.tokenize('walking talking balking biking hiking rolling scrolling')
self.assertEqual(['walking', 'talking', 'bal', '##king', 'biking', 'hiking', 'rolling', 'scrolling'], tokens)
tokens = tokenizer.tokenize('biostatistics')
self.assertEqual(['bio', '##sta', '##tist', '##ics'], tokens)
tokens = tokenizer.tokenize('adversarial')
self.assertEqual(['ad', '##vers', '##aria', '##l'], tokens)
tokenizer = BertTokenizer.from_pretrained('bert-base-cased')
tokens = tokenizer.tokenize('walking talking balking biking hiking')
self.assertEqual(['walking', 'talking', 'b', '##alk', '##ing', 'bi', '##king', 'hiking'], tokens)
tokens = tokenizer.tokenize('rolling scrolling')
self.assertEqual(['rolling', 'scroll', '##ing'], tokens)
tokens = tokenizer.tokenize('biostatistics')
self.assertEqual(['bio', '##sta', '##tist', '##ics'], tokens)
tokens = tokenizer.tokenize('adversarial')
self.assertEqual(['ad', '##vers', '##aria', '##l'], tokens)
def test_xlm_roberta_base_en_book_examples(self):
# These are examples used in the ptr4tr book
tokenizer = AutoTokenizer.from_pretrained('xlm-roberta-base')
tokens = tokenizer.tokenize('walking talking balking biking hiking rolling scrolling')
self.assertEqual(['▁walking', '▁talking', '▁bal', 'king', '▁bi', 'king', '▁hi', 'king', '▁roll', 'ing', '▁scroll', 'ing'], tokens)
tokens = tokenizer.tokenize('rolling scrolling')
self.assertEqual(['▁roll', 'ing', '▁scroll', 'ing'], tokens)
tokens = tokenizer.tokenize('biostatistics')
self.assertEqual(['▁bio', 'stat', 'istic', 's'], tokens)
tokens = tokenizer.tokenize('adversarial')
self.assertEqual(['▁adversari', 'al'], tokens)
def test_bert_base_multilingual_en_book_examples(self):
tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-uncased')
tokens = tokenizer.tokenize('walking talking balking biking hiking rolling scrolling')
self.assertEqual(['walking', 'talking', 'bal', '##king', 'bi', '##king', 'hi', '##king', 'rolling', 'sc', '##roll', '##ing'], tokens)
tokens = tokenizer.tokenize('rolling scrolling')
self.assertEqual(['rolling', 'sc', '##roll', '##ing'], tokens)
tokens = tokenizer.tokenize('biostatistics')
self.assertEqual(['bio', '##stat', '##istic', '##s'], tokens)
tokens = tokenizer.tokenize('adversarial')
self.assertEqual(['ad', '##versari', '##al'], tokens)
tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-cased')
tokens = tokenizer.tokenize('walking talking balking biking hiking')
self.assertEqual(['walking', 'talking', 'bal', '##king', 'bi', '##king', 'hi', '##king'], tokens)
tokens = tokenizer.tokenize('rolling scrolling')
self.assertEqual(['rolling', 's', '##cro', '##lling'], tokens)
tokens = tokenizer.tokenize('biostatistics')
self.assertEqual(['bio', '##stati', '##stic', '##s'], tokens)
tokens = tokenizer.tokenize('adversarial')
self.assertEqual(['ad', '##versari', '##al'], tokens)
def test_lucene_analyzer_en_book_examples(self):
analyzer = Analyzer(get_lucene_analyzer())
tokens = analyzer.analyze('walking talking balking biking hiking rolling scrolling')
self.assertEqual(['walk', 'talk', 'balk', 'bike', 'hike', 'roll', 'scroll'], tokens)
tokens = analyzer.analyze('rolling scrolling')
self.assertEqual(['roll', 'scroll'], tokens)
tokens = analyzer.analyze('biostatistics')
self.assertEqual(['biostatist'], tokens)
tokens = analyzer.analyze('adversarial')
self.assertEqual(['adversari'], tokens)
def test_bert_base_multilingual_fr_book_examples(self):
tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-uncased')
# walking talking biking hiking rolling scrolling
tokens = tokenizer.tokenize('marche parler vélo randonnée rouler défilement')
self.assertEqual(['marche', 'parler', 'velo', 'rand', '##onne', '##e', 'ro', '##uler', 'def', '##ile', '##ment'], tokens)
# rolling scrolling
tokens = tokenizer.tokenize('défilement roulant')
self.assertEqual(['def', '##ile', '##ment', 'ro', '##ulant'], tokens)
# biostatistics
tokens = tokenizer.tokenize('biostatistique')
self.assertEqual(['bio', '##stat', '##istique'], tokens)
# adversarial
tokens = tokenizer.tokenize('antagoniste')
self.assertEqual(['ant', '##ago', '##niste'], tokens)
tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-cased')
# walking talking biking hiking rolling scrolling
tokens = tokenizer.tokenize('marche parler vélo randonnée rouler défilement')
self.assertEqual(['marche', 'parler', 'v', '##él', '##o', 'rand', '##onnée', 'ro', '##uler', 'dé', '##file', '##ment'], tokens)
# rolling scrolling
tokens = tokenizer.tokenize('défilement roulant')
self.assertEqual(['dé', '##file', '##ment', 'ro', '##ulant'], tokens)
# biostatistics
tokens = tokenizer.tokenize('biostatistique')
self.assertEqual(['bio', '##stati', '##stique'], tokens)
# adversarial
tokens = tokenizer.tokenize('antagoniste')
self.assertEqual(['ant', '##agon', '##iste'], tokens)
def test_lucene_analyzer_fr_book_examples(self):
analyzer = Analyzer(get_lucene_analyzer(language='fr'))
tokens = analyzer.analyze('marche parler vélo randonnée rouler défilement')
self.assertEqual(['march', 'parl', 'vélo', 'randon', 'roul', 'defil'], tokens)
tokens = analyzer.analyze('défilement roulant')
self.assertEqual(['defil', 'roulant'], tokens)
tokens = analyzer.analyze('biostatistique')
self.assertEqual(['biostatist'], tokens)
tokens = analyzer.analyze('antagoniste')
self.assertEqual(['antagonist'], tokens)
def test_bert_base_multilingual_zh_book_examples(self):
tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-uncased')
# walking talking biking hiking rolling scrolling
tokens = tokenizer.tokenize('走路说话骑自行车远足滚动滚动')
self.assertEqual(['走', '路', '说', '话', '骑', '自', '行', '车', '远', '足', '滚', '动', '滚', '动'], tokens)
# rolling scrolling
tokens = tokenizer.tokenize('滚动滚动')
self.assertEqual(['滚', '动', '滚', '动'], tokens)
# biostatistics
tokens = tokenizer.tokenize('生物统计学')
self.assertEqual(['生', '物', '统', '计', '学'], tokens)
# adversarial
tokens = tokenizer.tokenize('对抗的')
self.assertEqual(['对', '抗', '的'], tokens)
tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-cased')
# walking talking biking hiking rolling scrolling
tokens = tokenizer.tokenize('走路说话骑自行车远足滚动滚动')
self.assertEqual(['走', '路', '说', '话', '骑', '自', '行', '车', '远', '足', '滚', '动', '滚', '动'], tokens)
# rolling scrolling
tokens = tokenizer.tokenize('滚动滚动')
self.assertEqual(['滚', '动', '滚', '动'], tokens)
# biostatistics
tokens = tokenizer.tokenize('生物统计学')
self.assertEqual(['生', '物', '统', '计', '学'], tokens)
# adversarial
tokens = tokenizer.tokenize('对抗的')
self.assertEqual(['对', '抗', '的'], tokens)
def test_lucene_analyzer_zh_book_examples(self):
analyzer = Analyzer(get_lucene_analyzer(language='zh'))
tokens = analyzer.analyze('走路说话骑自行车远足滚动滚动')
self.assertEqual(['走路', '路说', '说话', '话骑', '骑自', '自行', '行车', '车远', '远足', '足滚', '滚动', '动滚', '滚动'], tokens)
tokens = analyzer.analyze('滚动滚动')
self.assertEqual(['滚动', '动滚', '滚动'], tokens)
tokens = analyzer.analyze('生物统计学')
self.assertEqual(['生物', '物统', '统计', '计学'], tokens)
tokens = analyzer.analyze('对抗的')
self.assertEqual(['对抗', '抗的'], tokens)
def test_bert_base_multilingual_ar_book_examples(self):
tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-uncased')
# walking talking biking hiking rolling scrolling
tokens = tokenizer.tokenize('المشي الحديث ركوب الدراجات المشي لمسافات طويلة المتداول التمرير')
self.assertEqual(['ال', '##م', '##شي', 'الحديث', 'ر', '##كو', '##ب', 'ال', '##در', '##اج', '##ات', 'ال', '##م', '##شي', 'لم', '##سا', '##فات', 'طويلة', 'ال', '##مت', '##دا', '##ول', 'ال', '##تم', '##رير'], tokens)
# rolling scrolling
tokens = tokenizer.tokenize('المتداول التمرير')
self.assertEqual(['ال', '##مت', '##دا', '##ول', 'ال', '##تم', '##رير'], tokens)
# biostatistics
tokens = tokenizer.tokenize('الإحصاء الحيوي')
self.assertEqual(['الاحصاء', 'ال', '##حي', '##وي'], tokens)
# adversarial
tokens = tokenizer.tokenize('عدائي')
self.assertEqual(['ع', '##دا', '##يي'], tokens)
tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-cased')
# walking talking biking hiking rolling scrolling
tokens = tokenizer.tokenize('المشي الحديث ركوب الدراجات المشي لمسافات طويلة المتداول التمرير')
self.assertEqual(['ال', '##م', '##شي', 'الحديث', 'ر', '##كو', '##ب', 'ال', '##در', '##اجات', 'ال', '##م', '##شي', 'لم', '##سا', '##فات', 'طويلة', 'ال', '##مت', '##دا', '##ول', 'ال', '##تم', '##رير'], tokens)
# rolling scrolling
tokens = tokenizer.tokenize('المتداول التمرير')
self.assertEqual(['ال', '##مت', '##دا', '##ول', 'ال', '##تم', '##رير'], tokens)
# biostatistics
tokens = tokenizer.tokenize('الإحصاء الحيوي')
self.assertEqual(['الإحصاء', 'ال', '##حي', '##وي'], tokens)
# adversarial
tokens = tokenizer.tokenize('عدائي')
self.assertEqual(['ع', '##دا', '##ئي'], tokens)
def test_bert_base_multilingual_hi_book_examples(self):
tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-uncased')
# walking talking biking hiking rolling scrolling
tokens = tokenizer.tokenize('चलने की बात करते हुए बाइक चलाना लंबी पैदल यात्रा स्क्रॉल')
self.assertEqual(['चल', '##न', 'की', 'बात', 'करत', 'हए', 'ब', '##ा', '##इ', '##क', 'चल', '##ाना', 'ल', '##बी', 'पद', '##ल', 'यातरा', 'सक', '##र', '##ॉल'], tokens)
# rolling scrolling
tokens = tokenizer.tokenize('रोलिंग स्क्रॉल')
self.assertEqual(['र', '##ोल', '##िग', 'सक', '##र', '##ॉल'], tokens)
# biostatistics
tokens = tokenizer.tokenize('जैव सांख्यिकी')
self.assertEqual(['ज', '##व', 'स', '##ा', '##ख', '##यिक', '##ी'], tokens)
# adversarial
tokens = tokenizer.tokenize('विरोधात्मक')
self.assertEqual(['वि', '##रो', '##धा', '##तमक'], tokens)
tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-cased')
# walking talking biking hiking rolling scrolling
tokens = tokenizer.tokenize('चलने की बात करते हुए बाइक चलाना लंबी पैदल यात्रा स्क्रॉल')
self.assertEqual(['च', '##लन', '##े', 'की', 'बात', 'करते', 'हुए', 'ब', '##ा', '##इ', '##क', 'च', '##ला', '##ना', 'ल', '##ं', '##बी', 'प', '##ै', '##दल', 'यात्रा', 'स', '##्क', '##्र', '##ॉल'], tokens)
# rolling scrolling
tokens = tokenizer.tokenize('रोलिंग स्क्रॉल')
self.assertEqual(['र', '##ोल', '##िंग', 'स', '##्क', '##्र', '##ॉल'], tokens)
# biostatistics
tokens = tokenizer.tokenize('जैव सांख्यिकी')
self.assertEqual(['ज', '##ै', '##व', 'स', '##ा', '##ं', '##ख', '##्य', '##िकी'], tokens)
# adversarial
tokens = tokenizer.tokenize('विरोधात्मक')
self.assertEqual(['वि', '##रो', '##धा', '##त्मक'], tokens)
def test_bert_base_multilingual_bn_book_examples(self):
tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-uncased')
# walking talking biking hiking rolling scrolling
tokens = tokenizer.tokenize('হাঁটাচলা বাইকিং হাইকিং রোলিং স্ক্রোলিং')
self.assertEqual(['হ', '##াট', '##া', '##চ', '##লা', 'বা', '##ই', '##কি', '##ং', 'হ', '##াই', '##কি', '##ং', 'র', '##ো', '##লি', '##ং', 'স', '##কর', '##ো', '##লি', '##ং'], tokens)
# rolling scrolling
tokens = tokenizer.tokenize('ঘূর্ণায়মান স্ক্রোলিং')
self.assertEqual(['ঘর', '##ণা', '##য', '##মান', 'স', '##কর', '##ো', '##লি', '##ং'], tokens)
# biostatistics
tokens = tokenizer.tokenize('বায়োস্টাটিক্স')
self.assertEqual(['বা', '##যে', '##াস', '##টা', '##টি', '##ক', '##স'], tokens)
# adversarial
tokens = tokenizer.tokenize('প্রতিকূল')
self.assertEqual(['পরতি', '##ক', '##ল'], tokens)
tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-cased')
# walking talking biking hiking rolling scrolling
tokens = tokenizer.tokenize('হাঁটাচলা বাইকিং হাইকিং রোলিং স্ক্রোলিং')
self.assertEqual(['হ', '##া', '##ঁ', '##টা', '##চ', '##লা', 'বা', '##ই', '##কি', '##ং', 'হ', '##াই', '##কি', '##ং', 'র', '##োল', '##িং', 'স', '##্ক', '##্র', '##োল', '##িং'], tokens)
# rolling scrolling
tokens = tokenizer.tokenize('ঘূর্ণায়মান স্ক্রোলিং')
self.assertEqual(['ঘ', '##ূর্ণ', '##ায়', '##মান', 'স', '##্ক', '##্র', '##োল', '##িং'], tokens)
# biostatistics
tokens = tokenizer.tokenize('বায়োস্টাটিক্স')
self.assertEqual(['বা', '##য়', '##ো', '##স্ট', '##াট', '##িক', '##্স'], tokens)
# adversarial
tokens = tokenizer.tokenize('প্রতিকূল')
self.assertEqual(['প্রতি', '##ক', '##ূ', '##ল'], tokens)
def test_bert_base_multilingual_am(self):
"""
amharic
"""
tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-uncased')
tokens = tokenizer.tokenize('የሽፋኑ ርዕሰ ጉዳይ የሞቱ ሰዎች ይነሳሉ')
self.assertEqual(['[UNK]', '[UNK]', '[UNK]', '[UNK]', '[UNK]', '[UNK]'], tokens)
tokens = tokenizer.tokenize('የሽፋኑ')
self.assertEqual(['[UNK]'], tokens)
tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-cased')
tokens = tokenizer.tokenize('የሽፋኑ ርዕሰ ጉዳይ የሞቱ ሰዎች ይነሳሉ')
self.assertEqual(['[UNK]', '[UNK]', '[UNK]', '[UNK]', '[UNK]', '[UNK]'], tokens)
tokens = tokenizer.tokenize('የሽፋኑ')
self.assertEqual(['[UNK]'], tokens)
def test_xlmr_base_multilingual_am(self):
"""
amharic
"""
tokenizer = AutoTokenizer.from_pretrained('xlm-roberta-base')
tokens = tokenizer.tokenize('የሽፋኑ ርዕሰ ጉዳይ የሞቱ ሰዎች ይነሳሉ')
self.assertEqual(['▁የ', 'ሽ', 'ፋ', 'ኑ', '▁ርዕሰ', '▁ጉዳይ', '▁የ', 'ሞቱ', '▁ሰዎች', '▁ይ', 'ነሳ', 'ሉ'], tokens)
tokens = tokenizer.tokenize('የሽፋኑ')
self.assertEqual(['▁የ', 'ሽ', 'ፋ', 'ኑ'], tokens)
def test_bert_base_multilingual_ha(self):
"""
hausa
"""
tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-uncased')
tokens = tokenizer.tokenize('Ya san kungiyar, ya san komai game da kungiyar')
self.assertEqual(['ya', 'san', 'kung', '##iya', '##r', ',', 'ya', 'san', 'koma', '##i', 'game', 'da', 'kung', '##iya', '##r'], tokens)
tokens = tokenizer.tokenize('kungiyar')
self.assertEqual(['kung', '##iya', '##r'], tokens)
tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-cased')
tokens = tokenizer.tokenize('Ya san kungiyar, ya san komai game da kungiyar')
self.assertEqual(['Ya', 'san', 'kung', '##iya', '##r', ',', 'ya', 'san', 'koma', '##i', 'game', 'da', 'kung', '##iya', '##r'], tokens)
tokens = tokenizer.tokenize('kungiyar')
self.assertEqual(['kung', '##iya', '##r'], tokens)
def test_xlmr_base_multilingual_ha(self):
"""
hausa
"""
tokenizer = AutoTokenizer.from_pretrained('xlm-roberta-base')
tokens = tokenizer.tokenize('Ya san kungiyar, ya san komai game da kungiyar')
self.assertEqual(['▁Ya', '▁san', '▁kungiyar', ',', '▁ya', '▁san', '▁koma', 'i', '▁game', '▁da', '▁kungiyar'], tokens)
tokens = tokenizer.tokenize('kungiyar')
self.assertEqual(['▁kungiyar'], tokens)
def test_bert_base_multilingual_ig(self):
"""
igbo
"""
tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-uncased')
tokens = tokenizer.tokenize('Oke Ọñụ Adaa Dịka Lọọlọ Ezenneka gbàrà Ahọ Otu Narị')
self.assertEqual(['ok', '##e', 'onu', 'ada', '##a', 'dik', '##a', 'lo', '##olo', 'ezen', '##nek', '##a', 'gba', '##ra', 'ah', '##o', 'ot', '##u', 'nar', '##i'], tokens)
tokens = tokenizer.tokenize('Ezenneka')
self.assertEqual(['ezen', '##nek', '##a'], tokens)
tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-cased')
tokens = tokenizer.tokenize('Oke Ọñụ Adaa Dịka Lọọlọ Ezenneka gbàrà Ahọ Otu Narị')
self.assertEqual(['Ok', '##e', 'Ọ', '##ñ', '##ụ', 'Ada', '##a', 'D', '##ị', '##ka', 'L', '##ọ', '##ọ', '##l', '##ọ', 'Ezen', '##nek', '##a', 'g', '##bà', '##rà', 'Ah', '##ọ', 'O', '##tu', 'Na', '##r', '##ị'], tokens)
tokens = tokenizer.tokenize('Ezenneka')
self.assertEqual(['Ezen', '##nek', '##a'], tokens)
def test_xlmr_base_multilingual_ig(self):
"""
igbo
"""
tokenizer = AutoTokenizer.from_pretrained('xlm-roberta-base')
tokens = tokenizer.tokenize('Oke Ọñụ Adaa Dịka Lọọlọ Ezenneka gbàrà Ahọ Otu Narị')
self.assertEqual(['▁O', 'ke', '▁', 'Ọ', 'ñ', 'ụ', '▁Ada', 'a', '▁D', 'ị', 'ka', '▁L', 'ọ', 'ọ', 'l', 'ọ', '▁Ezen', 'nek', 'a', '▁', 'gb', 'à', 'rà', '▁Ah', 'ọ', '▁O', 'tu', '▁Nar', 'ị'], tokens)
tokens = tokenizer.tokenize('Ezenneka')
self.assertEqual(['▁Ezen', 'nek', 'a'], tokens)
def test_bert_base_multilingual_om(self):
"""
Afaan Oromoo
"""
tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-uncased')
tokens = tokenizer.tokenize('Ani obbolaa keessan, Abdii Baalee Oromiyaatii')
self.assertEqual(['ani', 'ob', '##bola', '##a', 'ke', '##essa', '##n', ',', 'abd', '##ii', 'ba', '##ale', '##e', 'oro', '##mi', '##ya', '##atii'], tokens)
tokens = tokenizer.tokenize('Oromiyaatii')
self.assertEqual(['oro', '##mi', '##ya', '##atii'], tokens)
tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-cased')
tokens = tokenizer.tokenize('Ani obbolaa keessan, Abdii Baalee Oromiyaatii')
self.assertEqual(['Ani', 'ob', '##bola', '##a', 'ke', '##essa', '##n', ',', 'Abd', '##ii', 'Ba', '##ale', '##e', 'Oro', '##mi', '##ya', '##ati', '##i'], tokens)
tokens = tokenizer.tokenize('Oromiyaatii')
self.assertEqual(['Oro', '##mi', '##ya', '##ati', '##i'], tokens)
def test_xlmr_base_multilingual_om(self):
"""
Afaan Oromoo
"""
tokenizer = AutoTokenizer.from_pretrained('xlm-roberta-base')
tokens = tokenizer.tokenize('Ani obbolaa keessan, Abdii Baalee Oromiyaatii')
self.assertEqual(['▁Ani', '▁ob', 'bola', 'a', '▁keessa', 'n', ',', '▁Ab', 'dii', '▁Ba', 'ale', 'e', '▁Oromiyaa', 'tii'], tokens)
tokens = tokenizer.tokenize('Oromiyaatii')
self.assertEqual(['▁Oromiyaa', 'tii'], tokens)
def test_bert_base_multilingual_pcm(self):
"""
Nigerian Pidgin
"""
tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-uncased')
tokens = tokenizer.tokenize('Crude oil dey kill pickin for Nigeria?')
self.assertEqual(['cru', '##de', 'oil', 'de', '##y', 'kill', 'pick', '##in', 'for', 'nigeria', '?'], tokens)
tokens = tokenizer.tokenize('wahala')
self.assertEqual(['wah', '##ala'], tokens)
tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-cased')
tokens = tokenizer.tokenize('Crude oil dey kill pickin for Nigeria?')
self.assertEqual(['C', '##rude', 'oil', 'de', '##y', 'kill', 'pick', '##in', 'for', 'Nigeria', '?'], tokens)
tokens = tokenizer.tokenize('wahala')
self.assertEqual(['wa', '##hala'], tokens)
def test_xlmr_base_multilingual_pcm(self):
"""
Nigerian Pidgin
"""
tokenizer = AutoTokenizer.from_pretrained('xlm-roberta-base')
tokens = tokenizer.tokenize('Crude oil dey kill pickin for Nigeria?')
self.assertEqual(['▁Cru', 'de', '▁oil', '▁de', 'y', '▁kill', '▁pick', 'in', '▁for', '▁Nigeria', '?'], tokens)
tokens = tokenizer.tokenize('wahala')
self.assertEqual(['▁wa', 'hala'], tokens)
def test_bert_base_multilingual_so(self):
"""
Somali
"""
tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-uncased')
tokens = tokenizer.tokenize('Rabbigu wuxuu amar ku bixiyey in la dumiyo qalcadaha Kancaan.')
self.assertEqual(['rabbi', '##gu', 'wu', '##xu', '##u', 'amar', 'ku', 'bi', '##xi', '##ye', '##y', 'in', 'la', 'dum', '##iy', '##o', 'qal', '##cada', '##ha', 'kan', '##ca', '##an', '.'], tokens)
tokens = tokenizer.tokenize('bixiyey')
self.assertEqual(['bi', '##xi', '##ye', '##y'], tokens)
tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-cased')
tokens = tokenizer.tokenize('Rabbigu wuxuu amar ku bixiyey in la dumiyo qalcadaha Kancaan.')
self.assertEqual(['Rabbi', '##gu', 'w', '##ux', '##uu', 'amar', 'ku', 'bi', '##xi', '##ye', '##y', 'in', 'la', 'dum', '##iyo', 'q', '##al', '##cada', '##ha', 'Kan', '##ca', '##an', '.'], tokens)
tokens = tokenizer.tokenize('bixiyey')
self.assertEqual(['bi', '##xi', '##ye', '##y'], tokens)
def test_xlmr_base_multilingual_so(self):
"""
Somali
"""
tokenizer = AutoTokenizer.from_pretrained('xlm-roberta-base')
tokens = tokenizer.tokenize('Rabbigu wuxuu amar ku bixiyey in la dumiyo qalcadaha Kancaan.')
self.assertEqual(['▁Rabbi', 'gu', '▁wuxuu', '▁amar', '▁ku', '▁bixi', 'yey', '▁in', '▁la', '▁dum', 'iyo', '▁qal', 'cada', 'ha', '▁Kan', 'ca', 'an', '.'], tokens)
tokens = tokenizer.tokenize('bixiyey')
self.assertEqual(['▁bixi', 'yey'], tokens)
def test_bert_base_multilingual_sw(self):
"""
Swahili
"""
tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-uncased')
tokens = tokenizer.tokenize('Huduma ya upasuaji mkubwa na mdogo')
self.assertEqual(['hu', '##dum', '##a', 'ya', 'up', '##asu', '##aji', 'mk', '##ubwa', 'na', 'md', '##ogo'], tokens)
tokens = tokenizer.tokenize('upasuaji')
self.assertEqual(['up', '##asu', '##aji'], tokens)
tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-cased')
tokens = tokenizer.tokenize('Huduma ya upasuaji mkubwa na mdogo')
self.assertEqual(['Hu', '##dum', '##a', 'ya', 'up', '##asu', '##aji', 'mk', '##ub', '##wa', 'na', 'm', '##dogo'], tokens)
tokens = tokenizer.tokenize('upasuaji')
self.assertEqual(['up', '##asu', '##aji'], tokens)
def test_xlmr_base_multilingual_sw(self):
"""
Swahili
"""
tokenizer = AutoTokenizer.from_pretrained('xlm-roberta-base')
tokens = tokenizer.tokenize('Huduma ya upasuaji mkubwa na mdogo')
self.assertEqual(['▁Huduma', '▁ya', '▁up', 'asu', 'aji', '▁mkubwa', '▁na', '▁mdogo'], tokens)
tokens = tokenizer.tokenize('upasuaji')
self.assertEqual(['▁up', 'asu', 'aji'], tokens)
def test_bert_base_multilingual_ti(self):
"""
Tigrinya
"""
tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-uncased')
tokens = tokenizer.tokenize('ስርዓተ ቀብሪ ኢንጂነር ስመኘው በቀለ ትማሊ ተፈፂሙ')
self.assertEqual(['[UNK]', '[UNK]', '[UNK]', '[UNK]', '[UNK]', '[UNK]', '[UNK]'], tokens)
tokens = tokenizer.tokenize('ኢንጂነር')
self.assertEqual(['[UNK]'], tokens)
tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-cased')
tokens = tokenizer.tokenize('ስርዓተ ቀብሪ ኢንጂነር ስመኘው በቀለ ትማሊ ተፈፂሙ')
self.assertEqual(['[UNK]', '[UNK]', '[UNK]', '[UNK]', '[UNK]', '[UNK]', '[UNK]'], tokens)
tokens = tokenizer.tokenize('ኢንጂነር')
self.assertEqual(['[UNK]'], tokens)
def test_xlmr_base_multilingual_ti(self):
"""
Tigrinya
"""
tokenizer = AutoTokenizer.from_pretrained('xlm-roberta-base')
tokens = tokenizer.tokenize('ስርዓተ ቀብሪ ኢንጂነር ስመኘው በቀለ ትማሊ ተፈፂሙ')
self.assertEqual(['▁ስር', 'ዓ', 'ተ', '▁ቀ', 'ብሪ', '▁ኢን', 'ጂ', 'ነ', 'ር', '▁ስ', 'መ', 'ኘ', 'ው', '▁በቀለ', '▁ት', 'ማ', 'ሊ', '▁ተፈ', 'ፂ', 'ሙ'], tokens)
tokens = tokenizer.tokenize('ኢንጂነር')
self.assertEqual(['▁ኢን', 'ጂ', 'ነ', 'ር'], tokens)
def test_bert_base_multilingual_yo(self):
"""
Yoruba
"""
tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-uncased')
tokens = tokenizer.tokenize('Orúkọ ọmọbinrin rẹ̀ àgbà ni Merabu, ti èyí àbúrò ni Mikali.')
self.assertEqual(['oru', '##ko', 'omo', '##bin', '##rin', 're', 'ag', '##ba', 'ni', 'mera', '##bu', ',', 'ti', 'e', '##yi', 'abu', '##ro', 'ni', 'mika', '##li', '.'], tokens)
tokens = tokenizer.tokenize('ọmọbinrin')
self.assertEqual(['omo', '##bin', '##rin'], tokens)
tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-cased')
tokens = tokenizer.tokenize('Orúkọ ọmọbinrin rẹ̀ àgbà ni Merabu, ti èyí àbúrò ni Mikali.')
self.assertEqual(['Or', '##ú', '##k', '##ọ', 'ọ', '##m', '##ọ', '##bin', '##rin', 'r', '##ẹ̀', 'à', '##g', '##bà', 'ni', 'Mer', '##abu', ',', 'ti', 'è', '##y', '##í', 'à', '##b', '##úr', '##ò', 'ni', 'Mika', '##li', '.'], tokens)
tokens = tokenizer.tokenize('ọmọbinrin')
self.assertEqual(['ọ', '##m', '##ọ', '##bin', '##rin'], tokens)
def test_xlmr_base_multilingual_yo(self):
"""
Yoruba
"""
tokenizer = AutoTokenizer.from_pretrained('xlm-roberta-base')
tokens = tokenizer.tokenize('Orúkọ ọmọbinrin rẹ̀ àgbà ni Merabu, ti èyí àbúrò ni Mikali.')
self.assertEqual(['▁O', 'rú', 'k', 'ọ', '▁', 'ọ', 'm', 'ọ', 'bin', 'rin', '▁r', 'ẹ', '̀', '▁à', 'gb', 'à', '▁ni', '▁Mera', 'bu', ',', '▁ti', '▁è', 'y', 'í', '▁à', 'bú', 'rò', '▁ni', '▁Mi', 'kali', '.'], tokens)
tokens = tokenizer.tokenize('ọmọbinrin')
self.assertEqual(['▁', 'ọ', 'm', 'ọ', 'bin', 'rin'], tokens)
def test_doc2query(self):
tokenizer = T5Tokenizer.from_pretrained('castorini/doc2query-t5-base-msmarco')
tokens = tokenizer.tokenize('I have a new GPU!')
self.assertEqual(['▁I', '▁have', '▁', 'a', '▁new', '▁GPU', '!'], tokens)
tokenizer = T5Tokenizer.from_pretrained('castorini/doc2query-t5-base-msmarco')
tokens = tokenizer.tokenize('walking talking biking scrolling')
self.assertEqual(['▁walking', '▁talking', '▁biking', '▁scroll', 'ing'], tokens)
tokens = tokenizer.tokenize('biostatistics')
self.assertEqual(['▁bio', 'stat', 'istic', 's'], tokens)
tokens = tokenizer.tokenize('adversarial')
self.assertEqual(['▁adversar', 'i', 'al'], tokens)
def tearDown(self):
pass
if __name__ == '__main__':
unittest.main()
|