ghostsInTheMachine
commited on
Commit
•
c12e34c
1
Parent(s):
7bb1989
Update app.py
Browse files
app.py
CHANGED
@@ -1,23 +1,72 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
import
|
|
|
|
|
|
|
4 |
import tempfile
|
5 |
-
import shutil
|
6 |
import time
|
|
|
|
|
7 |
import ffmpeg
|
8 |
-
import numpy as np
|
9 |
-
from PIL import Image
|
10 |
from concurrent.futures import ThreadPoolExecutor
|
11 |
-
|
|
|
12 |
from infer import lotus # Import the depth model inference function
|
13 |
-
import spaces
|
14 |
|
15 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
17 |
|
18 |
# Add the preprocess_video function to limit video resolution and frame rate
|
19 |
-
def preprocess_video(video_path, target_fps=24, max_resolution=(
|
20 |
-
"""Preprocess the video to
|
21 |
video = mp.VideoFileClip(video_path)
|
22 |
|
23 |
# Resize video if it's larger than the target resolution
|
@@ -29,8 +78,11 @@ def preprocess_video(video_path, target_fps=24, max_resolution=(1920, 1080)):
|
|
29 |
|
30 |
return video
|
31 |
|
32 |
-
def process_frame(frame, seed=0):
|
33 |
-
"""
|
|
|
|
|
|
|
34 |
try:
|
35 |
# Convert frame to PIL Image
|
36 |
image = Image.fromarray(frame)
|
@@ -39,7 +91,7 @@ def process_frame(frame, seed=0):
|
|
39 |
with tempfile.NamedTemporaryFile(suffix='.png', delete=False) as tmp:
|
40 |
image.save(tmp.name)
|
41 |
|
42 |
-
# Process through
|
43 |
_, output_d = lotus(tmp.name, 'depth', seed, device)
|
44 |
|
45 |
# Clean up temp file
|
@@ -54,10 +106,14 @@ def process_frame(frame, seed=0):
|
|
54 |
return None
|
55 |
|
56 |
@spaces.GPU
|
57 |
-
def process_video(video_path, fps=0, seed=0, max_workers=
|
58 |
-
"""
|
|
|
|
|
|
|
59 |
temp_dir = None
|
60 |
try:
|
|
|
61 |
start_time = time.time()
|
62 |
|
63 |
# Preprocess the video
|
@@ -77,13 +133,11 @@ def process_video(video_path, fps=0, seed=0, max_workers=32):
|
|
77 |
frames_dir = os.path.join(temp_dir, "frames")
|
78 |
os.makedirs(frames_dir, exist_ok=True)
|
79 |
|
80 |
-
# Process frames in
|
81 |
-
batch_size = 50 # Increased batch size to fully utilize the GPU's capabilities
|
82 |
processed_frames = []
|
83 |
-
|
84 |
with ThreadPoolExecutor(max_workers=max_workers) as executor:
|
85 |
-
for i in range(0, total_frames,
|
86 |
-
futures = [executor.submit(process_frame, frames[j], seed) for j in range(i, min(i +
|
87 |
for j, future in enumerate(futures):
|
88 |
try:
|
89 |
result = future.result()
|
@@ -95,10 +149,12 @@ def process_video(video_path, fps=0, seed=0, max_workers=32):
|
|
95 |
# Collect processed frame for preview
|
96 |
processed_frames.append(result)
|
97 |
|
98 |
-
# Update preview
|
99 |
-
|
100 |
-
|
101 |
-
|
|
|
|
|
102 |
except Exception as e:
|
103 |
print(f"Error processing frame {i + j + 1}: {e}")
|
104 |
|
@@ -113,6 +169,7 @@ def process_video(video_path, fps=0, seed=0, max_workers=32):
|
|
113 |
shutil.make_archive(zip_path[:-4], 'zip', frames_dir)
|
114 |
|
115 |
# Create MP4 video
|
|
|
116 |
video_filename = f"depth_video_{int(time.time())}.mp4"
|
117 |
video_path = os.path.join(output_dir, video_filename)
|
118 |
|
@@ -153,7 +210,7 @@ def process_video(video_path, fps=0, seed=0, max_workers=32):
|
|
153 |
except Exception as e:
|
154 |
print(f"Error cleaning up temp directory: {e}")
|
155 |
|
156 |
-
def process_wrapper(video, fps=0, seed=0, max_workers=
|
157 |
if video is None:
|
158 |
raise gr.Error("Please upload a video.")
|
159 |
try:
|
@@ -197,7 +254,7 @@ custom_css = """
|
|
197 |
"""
|
198 |
|
199 |
# Gradio Interface
|
200 |
-
with gr.Blocks(css=custom_css) as demo:
|
201 |
gr.HTML('''
|
202 |
<div class="title-container">
|
203 |
<div id="title">Video Depth Estimation</div>
|
@@ -206,10 +263,36 @@ with gr.Blocks(css=custom_css) as demo:
|
|
206 |
|
207 |
with gr.Row():
|
208 |
with gr.Column():
|
209 |
-
video_input = gr.Video(
|
210 |
-
|
211 |
-
|
212 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
213 |
btn = gr.Button("Process Video", elem_id="submit-button")
|
214 |
|
215 |
with gr.Column():
|
@@ -218,12 +301,39 @@ with gr.Blocks(css=custom_css) as demo:
|
|
218 |
output_video = gr.File(label="Download Video (MP4)")
|
219 |
time_textbox = gr.Textbox(label="Status", interactive=False)
|
220 |
|
221 |
-
|
|
|
|
|
|
|
|
|
|
|
222 |
|
223 |
-
|
224 |
-
|
|
|
|
|
|
|
225 |
|
226 |
demo.queue()
|
227 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
228 |
if __name__ == "__main__":
|
229 |
-
demo.launch(debug=True)
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
+
import spaces
|
4 |
+
import moviepy.editor as mp
|
5 |
+
from PIL import Image
|
6 |
+
import numpy as np
|
7 |
import tempfile
|
|
|
8 |
import time
|
9 |
+
import os
|
10 |
+
import shutil
|
11 |
import ffmpeg
|
|
|
|
|
12 |
from concurrent.futures import ThreadPoolExecutor
|
13 |
+
from gradio.themes.base import Base
|
14 |
+
from gradio.themes.utils import colors, fonts
|
15 |
from infer import lotus # Import the depth model inference function
|
|
|
16 |
|
17 |
+
# Custom Theme Definition
|
18 |
+
class WhiteTheme(Base):
|
19 |
+
def __init__(
|
20 |
+
self,
|
21 |
+
*,
|
22 |
+
primary_hue: colors.Color | str = colors.orange,
|
23 |
+
font: fonts.Font | str | tuple[fonts.Font | str, ...] = (
|
24 |
+
fonts.GoogleFont("Inter"),
|
25 |
+
"ui-sans-serif",
|
26 |
+
"system-ui",
|
27 |
+
"sans-serif",
|
28 |
+
),
|
29 |
+
font_mono: fonts.Font | str | tuple[fonts.Font | str, ...] = (
|
30 |
+
fonts.GoogleFont("Inter"),
|
31 |
+
"ui-monospace",
|
32 |
+
"system-ui",
|
33 |
+
"monospace",
|
34 |
+
)
|
35 |
+
):
|
36 |
+
super().__init__(
|
37 |
+
primary_hue=primary_hue,
|
38 |
+
font=font,
|
39 |
+
font_mono=font_mono,
|
40 |
+
)
|
41 |
+
|
42 |
+
self.set(
|
43 |
+
background_fill_primary="*primary_50",
|
44 |
+
background_fill_secondary="white",
|
45 |
+
border_color_primary="*primary_300",
|
46 |
+
body_background_fill="white",
|
47 |
+
body_background_fill_dark="white",
|
48 |
+
block_background_fill="white",
|
49 |
+
block_background_fill_dark="white",
|
50 |
+
panel_background_fill="white",
|
51 |
+
panel_background_fill_dark="white",
|
52 |
+
body_text_color="black",
|
53 |
+
body_text_color_dark="black",
|
54 |
+
block_label_text_color="black",
|
55 |
+
block_label_text_color_dark="black",
|
56 |
+
block_border_color="white",
|
57 |
+
panel_border_color="white",
|
58 |
+
input_border_color="lightgray",
|
59 |
+
input_background_fill="white",
|
60 |
+
input_background_fill_dark="white",
|
61 |
+
shadow_drop="none"
|
62 |
+
)
|
63 |
+
|
64 |
+
# Set device
|
65 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
66 |
|
67 |
# Add the preprocess_video function to limit video resolution and frame rate
|
68 |
+
def preprocess_video(video_path, target_fps=24, max_resolution=(640, 360)):
|
69 |
+
"""Preprocess the video to reduce its resolution and frame rate."""
|
70 |
video = mp.VideoFileClip(video_path)
|
71 |
|
72 |
# Resize video if it's larger than the target resolution
|
|
|
78 |
|
79 |
return video
|
80 |
|
81 |
+
def process_frame(frame, seed=0, start_time=None):
|
82 |
+
"""
|
83 |
+
Process a single frame through the depth model.
|
84 |
+
Returns the discriminative depth map.
|
85 |
+
"""
|
86 |
try:
|
87 |
# Convert frame to PIL Image
|
88 |
image = Image.fromarray(frame)
|
|
|
91 |
with tempfile.NamedTemporaryFile(suffix='.png', delete=False) as tmp:
|
92 |
image.save(tmp.name)
|
93 |
|
94 |
+
# Process through lotus model
|
95 |
_, output_d = lotus(tmp.name, 'depth', seed, device)
|
96 |
|
97 |
# Clean up temp file
|
|
|
106 |
return None
|
107 |
|
108 |
@spaces.GPU
|
109 |
+
def process_video(video_path, fps=0, seed=0, max_workers=2):
|
110 |
+
"""
|
111 |
+
Process video to create depth map sequence and video.
|
112 |
+
Maintains original resolution and framerate if fps=0.
|
113 |
+
"""
|
114 |
temp_dir = None
|
115 |
try:
|
116 |
+
# Initialize start_time here for use in process_frame
|
117 |
start_time = time.time()
|
118 |
|
119 |
# Preprocess the video
|
|
|
133 |
frames_dir = os.path.join(temp_dir, "frames")
|
134 |
os.makedirs(frames_dir, exist_ok=True)
|
135 |
|
136 |
+
# Process frames in batches of 10
|
|
|
137 |
processed_frames = []
|
|
|
138 |
with ThreadPoolExecutor(max_workers=max_workers) as executor:
|
139 |
+
for i in range(0, total_frames, 10): # Process 10 frames at a time
|
140 |
+
futures = [executor.submit(process_frame, frames[j], seed, start_time) for j in range(i, min(i + 10, total_frames))]
|
141 |
for j, future in enumerate(futures):
|
142 |
try:
|
143 |
result = future.result()
|
|
|
149 |
# Collect processed frame for preview
|
150 |
processed_frames.append(result)
|
151 |
|
152 |
+
# Update preview
|
153 |
+
elapsed_time = time.time() - start_time
|
154 |
+
yield processed_frames[-1], None, None, f"Processing frame {i+j+1}/{total_frames}... Elapsed time: {elapsed_time:.2f} seconds"
|
155 |
+
|
156 |
+
if (i + j + 1) % 10 == 0:
|
157 |
+
print(f"Processed {i + j + 1}/{total_frames} frames")
|
158 |
except Exception as e:
|
159 |
print(f"Error processing frame {i + j + 1}: {e}")
|
160 |
|
|
|
169 |
shutil.make_archive(zip_path[:-4], 'zip', frames_dir)
|
170 |
|
171 |
# Create MP4 video
|
172 |
+
print("Creating MP4 video...")
|
173 |
video_filename = f"depth_video_{int(time.time())}.mp4"
|
174 |
video_path = os.path.join(output_dir, video_filename)
|
175 |
|
|
|
210 |
except Exception as e:
|
211 |
print(f"Error cleaning up temp directory: {e}")
|
212 |
|
213 |
+
def process_wrapper(video, fps=0, seed=0, max_workers=6):
|
214 |
if video is None:
|
215 |
raise gr.Error("Please upload a video.")
|
216 |
try:
|
|
|
254 |
"""
|
255 |
|
256 |
# Gradio Interface
|
257 |
+
with gr.Blocks(css=custom_css, theme=WhiteTheme()) as demo:
|
258 |
gr.HTML('''
|
259 |
<div class="title-container">
|
260 |
<div id="title">Video Depth Estimation</div>
|
|
|
263 |
|
264 |
with gr.Row():
|
265 |
with gr.Column():
|
266 |
+
video_input = gr.Video(
|
267 |
+
label="Upload Video",
|
268 |
+
interactive=True,
|
269 |
+
show_label=True,
|
270 |
+
height=360,
|
271 |
+
width=640
|
272 |
+
)
|
273 |
+
with gr.Row():
|
274 |
+
fps_slider = gr.Slider(
|
275 |
+
minimum=0,
|
276 |
+
maximum=60,
|
277 |
+
step=1,
|
278 |
+
value=0,
|
279 |
+
label="Output FPS (0 will inherit the original fps value)",
|
280 |
+
)
|
281 |
+
seed_slider = gr.Slider(
|
282 |
+
minimum=0,
|
283 |
+
maximum=999999999,
|
284 |
+
step=1,
|
285 |
+
value=0,
|
286 |
+
label="Seed",
|
287 |
+
)
|
288 |
+
max_workers_slider = gr.Slider(
|
289 |
+
minimum=1,
|
290 |
+
maximum=32,
|
291 |
+
step=1,
|
292 |
+
value=6,
|
293 |
+
label="Max Workers",
|
294 |
+
info="Determines how many frames to process in parallel"
|
295 |
+
)
|
296 |
btn = gr.Button("Process Video", elem_id="submit-button")
|
297 |
|
298 |
with gr.Column():
|
|
|
301 |
output_video = gr.File(label="Download Video (MP4)")
|
302 |
time_textbox = gr.Textbox(label="Status", interactive=False)
|
303 |
|
304 |
+
gr.Markdown("""
|
305 |
+
### Output Information
|
306 |
+
- High-quality MP4 video output
|
307 |
+
- Original resolution and framerate are maintained
|
308 |
+
- Frame sequence provided for maximum compatibility
|
309 |
+
""")
|
310 |
|
311 |
+
btn.click(
|
312 |
+
fn=process_wrapper,
|
313 |
+
inputs=[video_input, fps_slider, seed_slider, max_workers_slider],
|
314 |
+
outputs=[preview_image, output_frames_zip, output_video, time_textbox]
|
315 |
+
)
|
316 |
|
317 |
demo.queue()
|
318 |
|
319 |
+
api = gr.Interface(
|
320 |
+
fn=process_wrapper,
|
321 |
+
inputs=[
|
322 |
+
gr.Video(label="Upload Video"),
|
323 |
+
gr.Number(label="FPS", value=0),
|
324 |
+
gr.Number(label="Seed", value=0),
|
325 |
+
gr.Number(label="Max Workers", value=6)
|
326 |
+
],
|
327 |
+
outputs=[
|
328 |
+
gr.Image(label="Preview"),
|
329 |
+
gr.File(label="Frame Sequence"),
|
330 |
+
gr.File(label="Video"),
|
331 |
+
gr.Textbox(label="Status")
|
332 |
+
],
|
333 |
+
title="Video Depth Estimation API",
|
334 |
+
description="Generate depth maps from videos",
|
335 |
+
api_name="/process_video"
|
336 |
+
)
|
337 |
+
|
338 |
if __name__ == "__main__":
|
339 |
+
demo.launch(debug=True, show_error=True, share=False, server_name="0.0.0.0", server_port=7860)
|