|
import os |
|
os.system("pip install gradio==2.4.6") |
|
import sys |
|
import gradio as gr |
|
|
|
os.system('pip install detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu102/torch1.9/index.html') |
|
|
|
|
|
os.system("git clone https://github.com/facebookresearch/Detic.git --recurse-submodules") |
|
os.chdir("Detic") |
|
|
|
|
|
import torch |
|
|
|
|
|
|
|
import detectron2 |
|
from detectron2.utils.logger import setup_logger |
|
setup_logger() |
|
|
|
|
|
import sys |
|
import numpy as np |
|
import os, json, cv2, random |
|
|
|
|
|
from detectron2 import model_zoo |
|
from detectron2.engine import DefaultPredictor |
|
from detectron2.config import get_cfg |
|
from detectron2.utils.visualizer import Visualizer |
|
from detectron2.data import MetadataCatalog, DatasetCatalog |
|
|
|
|
|
sys.path.insert(0, 'third_party/CenterNet2/projects/CenterNet2/') |
|
from centernet.config import add_centernet_config |
|
from detic.config import add_detic_config |
|
from detic.modeling.utils import reset_cls_test |
|
|
|
from PIL import Image |
|
|
|
|
|
cfg = get_cfg() |
|
add_centernet_config(cfg) |
|
add_detic_config(cfg) |
|
cfg.MODEL.DEVICE='cpu' |
|
cfg.merge_from_file("configs/Detic_LCOCOI21k_CLIP_SwinB_896b32_4x_ft4x_max-size.yaml") |
|
cfg.MODEL.WEIGHTS = 'https://dl.fbaipublicfiles.com/detic/Detic_LCOCOI21k_CLIP_SwinB_896b32_4x_ft4x_max-size.pth' |
|
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5 |
|
cfg.MODEL.ROI_BOX_HEAD.ZEROSHOT_WEIGHT_PATH = 'rand' |
|
cfg.MODEL.ROI_HEADS.ONE_CLASS_PER_PROPOSAL = True |
|
predictor = DefaultPredictor(cfg) |
|
|
|
|
|
|
|
BUILDIN_CLASSIFIER = { |
|
'lvis': 'datasets/metadata/lvis_v1_clip_a+cname.npy', |
|
'objects365': 'datasets/metadata/o365_clip_a+cnamefix.npy', |
|
'openimages': 'datasets/metadata/oid_clip_a+cname.npy', |
|
'coco': 'datasets/metadata/coco_clip_a+cname.npy', |
|
} |
|
|
|
BUILDIN_METADATA_PATH = { |
|
'lvis': 'lvis_v1_val', |
|
'objects365': 'objects365_v2_val', |
|
'openimages': 'oid_val_expanded', |
|
'coco': 'coco_2017_val', |
|
} |
|
|
|
vocabulary = 'lvis' |
|
metadata = MetadataCatalog.get(BUILDIN_METADATA_PATH[vocabulary]) |
|
classifier = BUILDIN_CLASSIFIER[vocabulary] |
|
num_classes = len(metadata.thing_classes) |
|
reset_cls_test(predictor.model, classifier, num_classes) |
|
|
|
os.system("wget https://web.eecs.umich.edu/~fouhey/fun/desk/desk.jpg") |
|
|
|
def inference(img): |
|
|
|
im = cv2.imread(img) |
|
|
|
outputs = predictor(im) |
|
v = Visualizer(im[:, :, ::-1], metadata) |
|
out = v.draw_instance_predictions(outputs["instances"].to("cpu")) |
|
|
|
return Image.fromarray(np.uint8(out.get_image())).convert('RGB') |
|
|
|
title = "Detic" |
|
|
|
description = "Gradio demo for Detic: Detecting Twenty-thousand Classes using Image-level Supervision. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below." |
|
|
|
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2201.02605' target='_blank'>Detecting Twenty-thousand Classes using Image-level Supervision</a> | <a href='https://github.com/facebookresearch/Detic' target='_blank'>Github Repo</a></p>" |
|
|
|
examples = [['desk.jpg']] |
|
gr.Interface(inference, inputs=gr.inputs.Image(type="filepath"), outputs=gr.outputs.Image(type="pil"),enable_queue=True, title=title, |
|
description=description, |
|
article=article, |
|
examples=examples |
|
).launch() |