Spaces:
Running
on
L40S
Running
on
L40S
File size: 2,164 Bytes
dbac20f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
import logging
from typing import Any, Mapping
import torch
from torch import nn
from mmaudio.ext.synchformer.motionformer import MotionFormer
class Synchformer(nn.Module):
def __init__(self):
super().__init__()
self.vfeat_extractor = MotionFormer(extract_features=True,
factorize_space_time=True,
agg_space_module='TransformerEncoderLayer',
agg_time_module='torch.nn.Identity',
add_global_repr=False)
# self.vfeat_extractor = instantiate_from_config(vfeat_extractor)
# self.afeat_extractor = instantiate_from_config(afeat_extractor)
# # bridging the s3d latent dim (1024) into what is specified in the config
# # to match e.g. the transformer dim
# self.vproj = instantiate_from_config(vproj)
# self.aproj = instantiate_from_config(aproj)
# self.transformer = instantiate_from_config(transformer)
def forward(self, vis):
B, S, Tv, C, H, W = vis.shape
vis = vis.permute(0, 1, 3, 2, 4, 5) # (B, S, C, Tv, H, W)
# feat extractors return a tuple of segment-level and global features (ignored for sync)
# (B, S, tv, D), e.g. (B, 7, 8, 768)
vis = self.vfeat_extractor(vis)
return vis
def load_state_dict(self, sd: Mapping[str, Any], strict: bool = True):
# discard all entries except vfeat_extractor
sd = {k: v for k, v in sd.items() if k.startswith('vfeat_extractor')}
return super().load_state_dict(sd, strict)
if __name__ == "__main__":
model = Synchformer().cuda().eval()
sd = torch.load('./ext_weights/synchformer_state_dict.pth', weights_only=True)
model.load_state_dict(sd)
vid = torch.randn(2, 7, 16, 3, 224, 224).cuda()
features = model.extract_vfeats(vid, for_loop=False).detach().cpu()
print(features.shape)
# extract and save the state dict only
# sd = torch.load('./ext_weights/sync_model_audioset.pt')['model']
# torch.save(sd, './ext_weights/synchformer_state_dict.pth')
|