Spaces:
Running
on
L40S
Running
on
L40S
from typing import Literal, Optional | |
import open_clip | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from einops import rearrange | |
from open_clip import create_model_from_pretrained | |
from torchvision.transforms import Normalize | |
from mmaudio.ext.autoencoder import AutoEncoderModule | |
from mmaudio.ext.mel_converter import MelConverter | |
from mmaudio.ext.synchformer import Synchformer | |
from mmaudio.model.utils.distributions import DiagonalGaussianDistribution | |
def patch_clip(clip_model): | |
# a hack to make it output last hidden states | |
# https://github.com/mlfoundations/open_clip/blob/fc5a37b72d705f760ebbc7915b84729816ed471f/src/open_clip/model.py#L269 | |
def new_encode_text(self, text, normalize: bool = False): | |
cast_dtype = self.transformer.get_cast_dtype() | |
x = self.token_embedding(text).to(cast_dtype) # [batch_size, n_ctx, d_model] | |
x = x + self.positional_embedding.to(cast_dtype) | |
x = self.transformer(x, attn_mask=self.attn_mask) | |
x = self.ln_final(x) # [batch_size, n_ctx, transformer.width] | |
return F.normalize(x, dim=-1) if normalize else x | |
clip_model.encode_text = new_encode_text.__get__(clip_model) | |
return clip_model | |
class FeaturesUtils(nn.Module): | |
def __init__( | |
self, | |
*, | |
tod_vae_ckpt: Optional[str] = None, | |
bigvgan_vocoder_ckpt: Optional[str] = None, | |
synchformer_ckpt: Optional[str] = None, | |
enable_conditions: bool = True, | |
mode=Literal['16k', '44k'], | |
need_vae_encoder: bool = True, | |
): | |
super().__init__() | |
if enable_conditions: | |
self.clip_model = create_model_from_pretrained('hf-hub:apple/DFN5B-CLIP-ViT-H-14-384', | |
return_transform=False) | |
self.clip_preprocess = Normalize(mean=[0.48145466, 0.4578275, 0.40821073], | |
std=[0.26862954, 0.26130258, 0.27577711]) | |
self.clip_model = patch_clip(self.clip_model) | |
self.synchformer = Synchformer() | |
self.synchformer.load_state_dict( | |
torch.load(synchformer_ckpt, weights_only=True, map_location='cpu')) | |
self.tokenizer = open_clip.get_tokenizer('ViT-H-14-378-quickgelu') # same as 'ViT-H-14' | |
else: | |
self.clip_model = None | |
self.synchformer = None | |
self.tokenizer = None | |
if tod_vae_ckpt is not None: | |
self.tod = AutoEncoderModule(vae_ckpt_path=tod_vae_ckpt, | |
vocoder_ckpt_path=bigvgan_vocoder_ckpt, | |
mode=mode, | |
need_vae_encoder=need_vae_encoder) | |
else: | |
self.tod = None | |
self.mel_converter = MelConverter() | |
def compile(self): | |
if self.clip_model is not None: | |
self.clip_model.encode_image = torch.compile(self.clip_model.encode_image) | |
self.clip_model.encode_text = torch.compile(self.clip_model.encode_text) | |
if self.synchformer is not None: | |
self.synchformer = torch.compile(self.synchformer) | |
self.decode = torch.compile(self.decode) | |
self.vocode = torch.compile(self.vocode) | |
def train(self, mode: bool) -> None: | |
return super().train(False) | |
def encode_video_with_clip(self, x: torch.Tensor, batch_size: int = -1) -> torch.Tensor: | |
assert self.clip_model is not None, 'CLIP is not loaded' | |
# x: (B, T, C, H, W) H/W: 384 | |
b, t, c, h, w = x.shape | |
assert c == 3 and h == 384 and w == 384 | |
x = self.clip_preprocess(x) | |
x = rearrange(x, 'b t c h w -> (b t) c h w') | |
outputs = [] | |
if batch_size < 0: | |
batch_size = b * t | |
for i in range(0, b * t, batch_size): | |
outputs.append(self.clip_model.encode_image(x[i:i + batch_size], normalize=True)) | |
x = torch.cat(outputs, dim=0) | |
# x = self.clip_model.encode_image(x, normalize=True) | |
x = rearrange(x, '(b t) d -> b t d', b=b) | |
return x | |
def encode_video_with_sync(self, x: torch.Tensor, batch_size: int = -1) -> torch.Tensor: | |
assert self.synchformer is not None, 'Synchformer is not loaded' | |
# x: (B, T, C, H, W) H/W: 384 | |
b, t, c, h, w = x.shape | |
assert c == 3 and h == 224 and w == 224 | |
# partition the video | |
segment_size = 16 | |
step_size = 8 | |
num_segments = (t - segment_size) // step_size + 1 | |
segments = [] | |
for i in range(num_segments): | |
segments.append(x[:, i * step_size:i * step_size + segment_size]) | |
x = torch.stack(segments, dim=1) # (B, S, T, C, H, W) | |
outputs = [] | |
if batch_size < 0: | |
batch_size = b | |
x = rearrange(x, 'b s t c h w -> (b s) 1 t c h w') | |
for i in range(0, b * num_segments, batch_size): | |
outputs.append(self.synchformer(x[i:i + batch_size])) | |
x = torch.cat(outputs, dim=0) | |
x = rearrange(x, '(b s) 1 t d -> b (s t) d', b=b) | |
return x | |
def encode_text(self, text: list[str]) -> torch.Tensor: | |
assert self.clip_model is not None, 'CLIP is not loaded' | |
assert self.tokenizer is not None, 'Tokenizer is not loaded' | |
# x: (B, L) | |
tokens = self.tokenizer(text).to(self.device) | |
return self.clip_model.encode_text(tokens, normalize=True) | |
def encode_audio(self, x) -> DiagonalGaussianDistribution: | |
assert self.tod is not None, 'VAE is not loaded' | |
# x: (B * L) | |
mel = self.mel_converter(x) | |
dist = self.tod.encode(mel) | |
return dist | |
def vocode(self, mel: torch.Tensor) -> torch.Tensor: | |
assert self.tod is not None, 'VAE is not loaded' | |
return self.tod.vocode(mel) | |
def decode(self, z: torch.Tensor) -> torch.Tensor: | |
assert self.tod is not None, 'VAE is not loaded' | |
return self.tod.decode(z.transpose(1, 2)) | |
def device(self): | |
return next(self.parameters()).device | |
def dtype(self): | |
return next(self.parameters()).dtype | |