Spaces:
Running
on
L40S
Running
on
L40S
# Reference: # https://github.com/bytedance/Make-An-Audio-2 | |
import torch | |
import torch.nn as nn | |
import torchaudio | |
from einops import rearrange | |
from librosa.filters import mel as librosa_mel_fn | |
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5, norm_fn=torch.log10): | |
return norm_fn(torch.clamp(x, min=clip_val) * C) | |
def spectral_normalize_torch(magnitudes, norm_fn): | |
output = dynamic_range_compression_torch(magnitudes, norm_fn=norm_fn) | |
return output | |
class STFTConverter(nn.Module): | |
def __init__( | |
self, | |
*, | |
sampling_rate: float = 16_000, | |
n_fft: int = 1024, | |
num_mels: int = 128, | |
hop_size: int = 256, | |
win_size: int = 1024, | |
fmin: float = 0, | |
fmax: float = 8_000, | |
norm_fn=torch.log, | |
): | |
super().__init__() | |
self.sampling_rate = sampling_rate | |
self.n_fft = n_fft | |
self.num_mels = num_mels | |
self.hop_size = hop_size | |
self.win_size = win_size | |
self.fmin = fmin | |
self.fmax = fmax | |
self.norm_fn = norm_fn | |
mel = librosa_mel_fn(sr=self.sampling_rate, | |
n_fft=self.n_fft, | |
n_mels=self.num_mels, | |
fmin=self.fmin, | |
fmax=self.fmax) | |
mel_basis = torch.from_numpy(mel).float() | |
hann_window = torch.hann_window(self.win_size) | |
self.register_buffer('mel_basis', mel_basis) | |
self.register_buffer('hann_window', hann_window) | |
def device(self): | |
return self.hann_window.device | |
def forward(self, waveform: torch.Tensor) -> torch.Tensor: | |
# input: batch_size * length | |
bs = waveform.shape[0] | |
waveform = waveform.clamp(min=-1., max=1.) | |
spec = torch.stft(waveform, | |
self.n_fft, | |
hop_length=self.hop_size, | |
win_length=self.win_size, | |
window=self.hann_window, | |
center=True, | |
pad_mode='reflect', | |
normalized=False, | |
onesided=True, | |
return_complex=True) | |
spec = torch.view_as_real(spec) | |
# print('After stft', spec.shape, spec.min(), spec.max(), spec.mean()) | |
power = spec.pow(2).sum(-1) | |
angle = torch.atan2(spec[..., 1], spec[..., 0]) | |
print('power', power.shape, power.min(), power.max(), power.mean()) | |
print('angle', angle.shape, angle.min(), angle.max(), angle.mean()) | |
# print('mel', self.mel_basis.shape, self.mel_basis.min(), self.mel_basis.max(), | |
# self.mel_basis.mean()) | |
# spec = rearrange(spec, 'b f t c -> (b c) f t') | |
# spec = self.mel_transform(spec) | |
# spec = torch.matmul(self.mel_basis, spec) | |
# print('After mel', spec.shape, spec.min(), spec.max(), spec.mean()) | |
# spec = spectral_normalize_torch(spec, self.norm_fn) | |
# print('After norm', spec.shape, spec.min(), spec.max(), spec.mean()) | |
# compute magnitude | |
# magnitude = torch.sqrt((spec**2).sum(-1)) | |
# normalize by magnitude | |
# scaled_magnitude = torch.log10(magnitude.clamp(min=1e-5)) * 10 | |
# spec = spec / magnitude.unsqueeze(-1) * scaled_magnitude.unsqueeze(-1) | |
# power = torch.log10(power.clamp(min=1e-5)) * 10 | |
power = torch.log10(power.clamp(min=1e-5)) | |
print('After scaling', power.shape, power.min(), power.max(), power.mean()) | |
spec = torch.stack([power, angle], dim=-1) | |
# spec = rearrange(spec, '(b c) f t -> b c f t', b=bs) | |
spec = rearrange(spec, 'b f t c -> b c f t', b=bs) | |
# spec[:, :, 400:] = 0 | |
return spec | |
def invert(self, spec: torch.Tensor, length: int) -> torch.Tensor: | |
bs = spec.shape[0] | |
# spec = rearrange(spec, 'b c f t -> (b c) f t') | |
# print(spec.shape, self.mel_basis.shape) | |
# spec = torch.linalg.lstsq(self.mel_basis.unsqueeze(0), spec).solution | |
# spec = torch.linalg.pinv(self.mel_basis.unsqueeze(0)) @ spec | |
# spec = self.invmel_transform(spec) | |
spec = rearrange(spec, 'b c f t -> b f t c', b=bs).contiguous() | |
# spec[..., 0] = 10**(spec[..., 0] / 10) | |
power = spec[..., 0] | |
power = 10**power | |
# print('After unscaling', spec[..., 0].shape, spec[..., 0].min(), spec[..., 0].max(), | |
# spec[..., 0].mean()) | |
unit_vector = torch.stack([ | |
torch.cos(spec[..., 1]), | |
torch.sin(spec[..., 1]), | |
], dim=-1) | |
spec = torch.sqrt(power) * unit_vector | |
# spec = rearrange(spec, '(b c) f t -> b f t c', b=bs).contiguous() | |
spec = torch.view_as_complex(spec) | |
waveform = torch.istft( | |
spec, | |
self.n_fft, | |
length=length, | |
hop_length=self.hop_size, | |
win_length=self.win_size, | |
window=self.hann_window, | |
center=True, | |
normalized=False, | |
onesided=True, | |
return_complex=False, | |
) | |
return waveform | |
if __name__ == '__main__': | |
converter = STFTConverter(sampling_rate=16000) | |
signal = torchaudio.load('./output/ZZ6GRocWW38_000090.wav')[0] | |
# resample signal at 44100 Hz | |
# signal = torchaudio.transforms.Resample(16_000, 44_100)(signal) | |
L = signal.shape[1] | |
print('Input signal', signal.shape) | |
spec = converter(signal) | |
print('Final spec', spec.shape) | |
signal_recon = converter.invert(spec, length=L) | |
print('Output signal', signal_recon.shape, signal_recon.min(), signal_recon.max(), | |
signal_recon.mean()) | |
print('MSE', torch.nn.functional.mse_loss(signal, signal_recon)) | |
torchaudio.save('./output/ZZ6GRocWW38_000090_recon.wav', signal_recon, 16000) | |