Spaces:
Starting
on
L40S
Starting
on
L40S
import logging | |
from typing import Callable, Iterable, Optional | |
import torch | |
from torchdiffeq import odeint | |
# from torchcfm.conditional_flow_matching import ExactOptimalTransportConditionalFlowMatcher | |
log = logging.getLogger() | |
# Partially from https://github.com/gle-bellier/flow-matching | |
class FlowMatching: | |
def __init__(self, min_sigma: float = 0.0, inference_mode='euler', num_steps: int = 25): | |
# inference_mode: 'euler' or 'adaptive' | |
# num_steps: number of steps in the euler inference mode | |
super().__init__() | |
self.min_sigma = min_sigma | |
self.inference_mode = inference_mode | |
self.num_steps = num_steps | |
# self.fm = ExactOptimalTransportConditionalFlowMatcher(sigma=min_sigma) | |
assert self.inference_mode in ['euler', 'adaptive'] | |
if self.inference_mode == 'adaptive' and num_steps > 0: | |
log.info('The number of steps is ignored in adaptive inference mode ') | |
def get_conditional_flow(self, x0: torch.Tensor, x1: torch.Tensor, | |
t: torch.Tensor) -> torch.Tensor: | |
# which is psi_t(x), eq 22 in flow matching for generative models | |
t = t[:, None, None].expand_as(x0) | |
return (1 - (1 - self.min_sigma) * t) * x0 + t * x1 | |
def loss(self, predicted_v: torch.Tensor, x0: torch.Tensor, x1: torch.Tensor) -> torch.Tensor: | |
# return the mean error without reducing the batch dimension | |
reduce_dim = list(range(1, len(predicted_v.shape))) | |
target_v = x1 - (1 - self.min_sigma) * x0 | |
return (predicted_v - target_v).pow(2).mean(dim=reduce_dim) | |
def get_x0_xt_c( | |
self, | |
x1: torch.Tensor, | |
t: torch.Tensor, | |
Cs: list[torch.Tensor], | |
generator: Optional[torch.Generator] = None | |
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: | |
# x0 = torch.randn_like(x1, generator=generator) | |
x0 = torch.empty_like(x1).normal_(generator=generator) | |
# find mini-batch optimal transport | |
# x0, x1, _, Cs = self.fm.ot_sampler.sample_plan_with_labels(x0, x1, None, Cs, replace=True) | |
xt = self.get_conditional_flow(x0, x1, t) | |
return x0, x1, xt, Cs | |
def to_prior(self, fn: Callable, x1: torch.Tensor) -> torch.Tensor: | |
return self.run_t0_to_t1(fn, x1, 1, 0) | |
def to_data(self, fn: Callable, x0: torch.Tensor) -> torch.Tensor: | |
return self.run_t0_to_t1(fn, x0, 0, 1) | |
def run_t0_to_t1(self, fn: Callable, x0: torch.Tensor, t0: float, t1: float) -> torch.Tensor: | |
# fn: a function that takes (t, x) and returns the direction x0->x1 | |
if self.inference_mode == 'adaptive': | |
return odeint(fn, x0, torch.tensor([t0, t1], device=x0.device, dtype=x0.dtype)) | |
elif self.inference_mode == 'euler': | |
x = x0 | |
steps = torch.linspace(t0, t1 - self.min_sigma, self.num_steps + 1) | |
for ti, t in enumerate(steps[:-1]): | |
flow = fn(t, x) | |
next_t = steps[ti + 1] | |
dt = next_t - t | |
x = x + dt * flow | |
# return odeint(fn, | |
# x0, | |
# torch.tensor([t0, t1], device=x0.device, dtype=x0.dtype), | |
# method='rk4', | |
# options=dict(step_size=(t1 - t0) / self.num_steps))[-1] | |
# return odeint(fn, | |
# x0, | |
# torch.tensor([t0, t1], device=x0.device, dtype=x0.dtype), | |
# method='euler', | |
# options=dict(step_size=(t1 - t0) / self.num_steps))[-1] | |
return x | |