Spaces:
ginipick
/
Running on Zero

File size: 13,896 Bytes
b213d84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
# Copyright (c) Facebook, Inc. and its affiliates.
import logging
import numpy as np
from typing import Dict, List, Optional, Tuple
import torch
from torch import nn

from detectron2.config import configurable
from detectron2.data.detection_utils import convert_image_to_rgb
from detectron2.layers import move_device_like
from detectron2.structures import ImageList, Instances
from detectron2.utils.events import get_event_storage
from detectron2.utils.logger import log_first_n

from ..backbone import Backbone, build_backbone
from ..postprocessing import detector_postprocess
from ..proposal_generator import build_proposal_generator
from ..roi_heads import build_roi_heads
from .build import META_ARCH_REGISTRY

__all__ = ["GeneralizedRCNN", "ProposalNetwork"]


@META_ARCH_REGISTRY.register()
class GeneralizedRCNN(nn.Module):
    """
    Generalized R-CNN. Any models that contains the following three components:
    1. Per-image feature extraction (aka backbone)
    2. Region proposal generation
    3. Per-region feature extraction and prediction
    """

    @configurable
    def __init__(
        self,
        *,
        backbone: Backbone,
        proposal_generator: nn.Module,
        roi_heads: nn.Module,
        pixel_mean: Tuple[float],
        pixel_std: Tuple[float],
        input_format: Optional[str] = None,
        vis_period: int = 0,
    ):
        """
        Args:
            backbone: a backbone module, must follow detectron2's backbone interface
            proposal_generator: a module that generates proposals using backbone features
            roi_heads: a ROI head that performs per-region computation
            pixel_mean, pixel_std: list or tuple with #channels element, representing
                the per-channel mean and std to be used to normalize the input image
            input_format: describe the meaning of channels of input. Needed by visualization
            vis_period: the period to run visualization. Set to 0 to disable.
        """
        super().__init__()
        self.backbone = backbone
        self.proposal_generator = proposal_generator
        self.roi_heads = roi_heads

        self.input_format = input_format
        self.vis_period = vis_period
        if vis_period > 0:
            assert input_format is not None, "input_format is required for visualization!"

        self.register_buffer("pixel_mean", torch.tensor(pixel_mean).view(-1, 1, 1), False)
        self.register_buffer("pixel_std", torch.tensor(pixel_std).view(-1, 1, 1), False)
        assert (
            self.pixel_mean.shape == self.pixel_std.shape
        ), f"{self.pixel_mean} and {self.pixel_std} have different shapes!"

    @classmethod
    def from_config(cls, cfg):
        backbone = build_backbone(cfg)
        return {
            "backbone": backbone,
            "proposal_generator": build_proposal_generator(cfg, backbone.output_shape()),
            "roi_heads": build_roi_heads(cfg, backbone.output_shape()),
            "input_format": cfg.INPUT.FORMAT,
            "vis_period": cfg.VIS_PERIOD,
            "pixel_mean": cfg.MODEL.PIXEL_MEAN,
            "pixel_std": cfg.MODEL.PIXEL_STD,
        }

    @property
    def device(self):
        return self.pixel_mean.device

    def _move_to_current_device(self, x):
        return move_device_like(x, self.pixel_mean)

    def visualize_training(self, batched_inputs, proposals):
        """
        A function used to visualize images and proposals. It shows ground truth
        bounding boxes on the original image and up to 20 top-scoring predicted
        object proposals on the original image. Users can implement different
        visualization functions for different models.

        Args:
            batched_inputs (list): a list that contains input to the model.
            proposals (list): a list that contains predicted proposals. Both
                batched_inputs and proposals should have the same length.
        """
        from detectron2.utils.visualizer import Visualizer

        storage = get_event_storage()
        max_vis_prop = 20

        for input, prop in zip(batched_inputs, proposals):
            img = input["image"]
            img = convert_image_to_rgb(img.permute(1, 2, 0), self.input_format)
            v_gt = Visualizer(img, None)
            v_gt = v_gt.overlay_instances(boxes=input["instances"].gt_boxes)
            anno_img = v_gt.get_image()
            box_size = min(len(prop.proposal_boxes), max_vis_prop)
            v_pred = Visualizer(img, None)
            v_pred = v_pred.overlay_instances(
                boxes=prop.proposal_boxes[0:box_size].tensor.cpu().numpy()
            )
            prop_img = v_pred.get_image()
            vis_img = np.concatenate((anno_img, prop_img), axis=1)
            vis_img = vis_img.transpose(2, 0, 1)
            vis_name = "Left: GT bounding boxes;  Right: Predicted proposals"
            storage.put_image(vis_name, vis_img)
            break  # only visualize one image in a batch

    def forward(self, batched_inputs: List[Dict[str, torch.Tensor]]):
        """
        Args:
            batched_inputs: a list, batched outputs of :class:`DatasetMapper` .
                Each item in the list contains the inputs for one image.
                For now, each item in the list is a dict that contains:

                * image: Tensor, image in (C, H, W) format.
                * instances (optional): groundtruth :class:`Instances`
                * proposals (optional): :class:`Instances`, precomputed proposals.

                Other information that's included in the original dicts, such as:

                * "height", "width" (int): the output resolution of the model, used in inference.
                  See :meth:`postprocess` for details.

        Returns:
            list[dict]:
                Each dict is the output for one input image.
                The dict contains one key "instances" whose value is a :class:`Instances`.
                The :class:`Instances` object has the following keys:
                "pred_boxes", "pred_classes", "scores", "pred_masks", "pred_keypoints"
        """
        if not self.training:
            return self.inference(batched_inputs)

        images = self.preprocess_image(batched_inputs)
        if "instances" in batched_inputs[0]:
            gt_instances = [x["instances"].to(self.device) for x in batched_inputs]
        else:
            gt_instances = None

        features = self.backbone(images.tensor)

        if self.proposal_generator is not None:
            proposals, proposal_losses = self.proposal_generator(images, features, gt_instances)
        else:
            assert "proposals" in batched_inputs[0]
            proposals = [x["proposals"].to(self.device) for x in batched_inputs]
            proposal_losses = {}

        _, detector_losses = self.roi_heads(images, features, proposals, gt_instances)
        if self.vis_period > 0:
            storage = get_event_storage()
            if storage.iter % self.vis_period == 0:
                self.visualize_training(batched_inputs, proposals)

        losses = {}
        losses.update(detector_losses)
        losses.update(proposal_losses)
        return losses

    def inference(
        self,
        batched_inputs: List[Dict[str, torch.Tensor]],
        detected_instances: Optional[List[Instances]] = None,
        do_postprocess: bool = True,
    ):
        """
        Run inference on the given inputs.

        Args:
            batched_inputs (list[dict]): same as in :meth:`forward`
            detected_instances (None or list[Instances]): if not None, it
                contains an `Instances` object per image. The `Instances`
                object contains "pred_boxes" and "pred_classes" which are
                known boxes in the image.
                The inference will then skip the detection of bounding boxes,
                and only predict other per-ROI outputs.
            do_postprocess (bool): whether to apply post-processing on the outputs.

        Returns:
            When do_postprocess=True, same as in :meth:`forward`.
            Otherwise, a list[Instances] containing raw network outputs.
        """
        assert not self.training

        images = self.preprocess_image(batched_inputs)
        features = self.backbone(images.tensor)

        if detected_instances is None:
            if self.proposal_generator is not None:
                proposals, _ = self.proposal_generator(images, features, None)
            else:
                assert "proposals" in batched_inputs[0]
                proposals = [x["proposals"].to(self.device) for x in batched_inputs]

            results, _ = self.roi_heads(images, features, proposals, None)
        else:
            detected_instances = [x.to(self.device) for x in detected_instances]
            results = self.roi_heads.forward_with_given_boxes(features, detected_instances)

        if do_postprocess:
            assert not torch.jit.is_scripting(), "Scripting is not supported for postprocess."
            return GeneralizedRCNN._postprocess(results, batched_inputs, images.image_sizes)
        return results

    def preprocess_image(self, batched_inputs: List[Dict[str, torch.Tensor]]):
        """
        Normalize, pad and batch the input images.
        """
        images = [self._move_to_current_device(x["image"]) for x in batched_inputs]
        images = [(x - self.pixel_mean) / self.pixel_std for x in images]
        images = ImageList.from_tensors(
            images,
            self.backbone.size_divisibility,
            padding_constraints=self.backbone.padding_constraints,
        )
        return images

    @staticmethod
    def _postprocess(instances, batched_inputs: List[Dict[str, torch.Tensor]], image_sizes):
        """
        Rescale the output instances to the target size.
        """
        # note: private function; subject to changes
        processed_results = []
        for results_per_image, input_per_image, image_size in zip(
            instances, batched_inputs, image_sizes
        ):
            height = input_per_image.get("height", image_size[0])
            width = input_per_image.get("width", image_size[1])
            r = detector_postprocess(results_per_image, height, width)
            processed_results.append({"instances": r})
        return processed_results


@META_ARCH_REGISTRY.register()
class ProposalNetwork(nn.Module):
    """
    A meta architecture that only predicts object proposals.
    """

    @configurable
    def __init__(
        self,
        *,
        backbone: Backbone,
        proposal_generator: nn.Module,
        pixel_mean: Tuple[float],
        pixel_std: Tuple[float],
    ):
        """
        Args:
            backbone: a backbone module, must follow detectron2's backbone interface
            proposal_generator: a module that generates proposals using backbone features
            pixel_mean, pixel_std: list or tuple with #channels element, representing
                the per-channel mean and std to be used to normalize the input image
        """
        super().__init__()
        self.backbone = backbone
        self.proposal_generator = proposal_generator
        self.register_buffer("pixel_mean", torch.tensor(pixel_mean).view(-1, 1, 1), False)
        self.register_buffer("pixel_std", torch.tensor(pixel_std).view(-1, 1, 1), False)

    @classmethod
    def from_config(cls, cfg):
        backbone = build_backbone(cfg)
        return {
            "backbone": backbone,
            "proposal_generator": build_proposal_generator(cfg, backbone.output_shape()),
            "pixel_mean": cfg.MODEL.PIXEL_MEAN,
            "pixel_std": cfg.MODEL.PIXEL_STD,
        }

    @property
    def device(self):
        return self.pixel_mean.device

    def _move_to_current_device(self, x):
        return move_device_like(x, self.pixel_mean)

    def forward(self, batched_inputs):
        """
        Args:
            Same as in :class:`GeneralizedRCNN.forward`

        Returns:
            list[dict]:
                Each dict is the output for one input image.
                The dict contains one key "proposals" whose value is a
                :class:`Instances` with keys "proposal_boxes" and "objectness_logits".
        """
        images = [self._move_to_current_device(x["image"]) for x in batched_inputs]
        images = [(x - self.pixel_mean) / self.pixel_std for x in images]
        images = ImageList.from_tensors(
            images,
            self.backbone.size_divisibility,
            padding_constraints=self.backbone.padding_constraints,
        )
        features = self.backbone(images.tensor)

        if "instances" in batched_inputs[0]:
            gt_instances = [x["instances"].to(self.device) for x in batched_inputs]
        elif "targets" in batched_inputs[0]:
            log_first_n(
                logging.WARN, "'targets' in the model inputs is now renamed to 'instances'!", n=10
            )
            gt_instances = [x["targets"].to(self.device) for x in batched_inputs]
        else:
            gt_instances = None
        proposals, proposal_losses = self.proposal_generator(images, features, gt_instances)
        # In training, the proposals are not useful at all but we generate them anyway.
        # This makes RPN-only models about 5% slower.
        if self.training:
            return proposal_losses

        processed_results = []
        for results_per_image, input_per_image, image_size in zip(
            proposals, batched_inputs, images.image_sizes
        ):
            height = input_per_image.get("height", image_size[0])
            width = input_per_image.get("width", image_size[1])
            r = detector_postprocess(results_per_image, height, width)
            processed_results.append({"proposals": r})
        return processed_results