Spaces:
ginipick
/
Running on Zero

File size: 5,036 Bytes
b213d84
 
16c2627
b213d84
 
 
 
 
 
afadbd4
 
16c2627
 
 
afadbd4
b213d84
 
 
 
 
 
 
 
 
 
 
16c2627
 
 
 
b213d84
 
 
 
 
 
16c2627
 
 
 
b213d84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16c2627
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import numpy as np
from PIL import Image
from huggingface_hub import snapshot_download
from leffa.transform import LeffaTransform
from leffa.model import LeffaModel
from leffa.inference import LeffaInference
from utils.garment_agnostic_mask_predictor import AutoMasker
from utils.densepose_predictor import DensePosePredictor

import gradio as gr

# Download checkpoints
snapshot_download(repo_id="franciszzj/Leffa", local_dir="./")


def leffa_predict(src_image_path, ref_image_path, control_type):
    assert control_type in [
        "virtual_tryon", "pose_transfer"], "Invalid control type: {}".format(control_type)
    src_image = Image.open(src_image_path)
    ref_image = Image.open(ref_image_path)

    src_image_array = np.array(src_image)
    ref_image_array = np.array(ref_image)

    # Mask
    if control_type == "virtual_tryon":
        automasker = AutoMasker(
            densepose_path="./ckpts/densepose",
            schp_path="./ckpts/schp",
        )
        src_image = src_image.convert("RGB")
        mask = automasker(src_image, "upper")["mask"]
    elif control_type == "pose_transfer":
        mask = Image.fromarray(np.ones_like(src_image_array) * 255)

    # DensePose
    densepose_predictor = DensePosePredictor(
        config_path="./ckpts/densepose/densepose_rcnn_R_50_FPN_s1x.yaml",
        weights_path="./ckpts/densepose/model_final_162be9.pkl",
    )
    src_image_iuv_array = densepose_predictor.predict_iuv(src_image_array)
    src_image_seg_array = densepose_predictor.predict_seg(src_image_array)
    src_image_iuv = Image.fromarray(src_image_iuv_array)
    src_image_seg = Image.fromarray(src_image_seg_array)
    if control_type == "virtual_tryon":
        densepose = src_image_seg
    elif control_type == "pose_transfer":
        densepose = src_image_iuv

    # Leffa
    transform = LeffaTransform()
    if control_type == "virtual_tryon":
        pretrained_model_name_or_path = "./ckpts/stable-diffusion-inpainting"
        pretrained_model = "./ckpts/virtual_tryon.pth"
    elif control_type == "pose_transfer":
        pretrained_model_name_or_path = "./ckpts/stable-diffusion-xl-1.0-inpainting-0.1"
        pretrained_model = "./ckpts/pose_transfer.pth"
    model = LeffaModel(
        pretrained_model_name_or_path=pretrained_model_name_or_path,
        pretrained_model=pretrained_model,
    )
    inference = LeffaInference(model=model)

    data = {
        "src_image": [src_image],
        "ref_image": [ref_image],
        "mask": [mask],
        "densepose": [densepose],
    }
    data = transform(data)
    output = inference(data)
    gen_image = output["generated_image"][0]
    # gen_image.save("gen_image.png")
    return np.array(gen_image)


if __name__ == "__main__":
    # import sys

    # src_image_path = sys.argv[1]
    # ref_image_path = sys.argv[2]
    # control_type = sys.argv[3]
    # leffa_predict(src_image_path, ref_image_path, control_type)

    with gr.Blocks().queue() as demo:
        gr.Markdown(
            "## Leffa: Learning Flow Fields in Attention for Controllable Person Image Generation")
        gr.Markdown("Leffa is a unified framework for controllable person image generation that enables precise manipulation of both appearance (i.e., virtual try-on) and pose (i.e., pose transfer).")
        with gr.Row():
            with gr.Column():
                src_image = gr.Image(
                    sources=["upload"],
                    type="filepath",
                    label="Source Person Image",
                    width=384,
                    height=512,
                )
                with gr.Row():
                    control_type = gr.Dropdown(
                        ["virtual_tryon", "pose_transfer"], label="Control Type")

                example = gr.Examples(
                    inputs=src_image,
                    examples_per_page=10,
                    examples=["./examples/14684_00_person.jpg",
                              "./examples/14092_00_person.jpg"],
                )

            with gr.Column():
                ref_image = gr.Image(
                    sources=["upload"],
                    type="filepath",
                    label="Reference Image",
                    width=384,
                    height=512,
                )
                with gr.Row():
                    gen_button = gr.Button("Generate")

                example = gr.Examples(
                    inputs=ref_image,
                    examples_per_page=10,
                    examples=["./examples/04181_00_garment.jpg",
                              "./examples/14684_00_person.jpg"],
                )

            with gr.Column():
                gen_image = gr.Image(
                    label="Generated Person Image",
                    width=384,
                    height=512,
                )

            gen_button.click(fn=leffa_predict, inputs=[
                             src_image, ref_image, control_type], outputs=[gen_image])

        demo.launch(share=True, server_port=7860)