Spaces:
ginipick
/
Running on Zero

File size: 8,920 Bytes
b213d84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
# Copyright (c) Facebook, Inc. and its affiliates.
import importlib
import os
import re
import subprocess
import sys
from collections import defaultdict

import numpy as np
import PIL
import torch
import torchvision
from tabulate import tabulate

__all__ = ["collect_env_info"]


def collect_torch_env():
    try:
        import torch.__config__

        return torch.__config__.show()
    except ImportError:
        # compatible with older versions of pytorch
        from torch.utils.collect_env import get_pretty_env_info

        return get_pretty_env_info()


def get_env_module():
    var_name = "DETECTRON2_ENV_MODULE"
    return var_name, os.environ.get(var_name, "<not set>")


def detect_compute_compatibility(CUDA_HOME, so_file):
    try:
        cuobjdump = os.path.join(CUDA_HOME, "bin", "cuobjdump")
        if os.path.isfile(cuobjdump):
            output = subprocess.check_output(
                "'{}' --list-elf '{}'".format(cuobjdump, so_file), shell=True
            )
            output = output.decode("utf-8").strip().split("\n")
            arch = []
            for line in output:
                line = re.findall(r"\.sm_([0-9]*)\.", line)[0]
                arch.append(".".join(line))
            arch = sorted(set(arch))
            return ", ".join(arch)
        else:
            return so_file + "; cannot find cuobjdump"
    except Exception:
        # unhandled failure
        return so_file


def collect_env_info():
    has_gpu = torch.cuda.is_available()  # true for both CUDA & ROCM
    torch_version = torch.__version__

    # NOTE that CUDA_HOME/ROCM_HOME could be None even when CUDA runtime libs are functional
    from torch.utils.cpp_extension import CUDA_HOME, ROCM_HOME

    has_rocm = False
    if (getattr(torch.version, "hip", None) is not None) and (ROCM_HOME is not None):
        has_rocm = True
    has_cuda = has_gpu and (not has_rocm)

    data = []
    data.append(("sys.platform", sys.platform))  # check-template.yml depends on it
    data.append(("Python", sys.version.replace("\n", "")))
    data.append(("numpy", np.__version__))

    try:
        import detectron2  # noqa

        data.append(
            (
                "detectron2",
                detectron2.__version__ + " @" + os.path.dirname(detectron2.__file__),
            )
        )
    except ImportError:
        data.append(("detectron2", "failed to import"))
    except AttributeError:
        data.append(("detectron2", "imported a wrong installation"))

    try:
        import detectron2._C as _C
    except ImportError as e:
        data.append(("detectron2._C", f"not built correctly: {e}"))

        # print system compilers when extension fails to build
        if sys.platform != "win32":  # don't know what to do for windows
            try:
                # this is how torch/utils/cpp_extensions.py choose compiler
                cxx = os.environ.get("CXX", "c++")
                cxx = subprocess.check_output("'{}' --version".format(cxx), shell=True)
                cxx = cxx.decode("utf-8").strip().split("\n")[0]
            except subprocess.SubprocessError:
                cxx = "Not found"
            data.append(("Compiler ($CXX)", cxx))

            if has_cuda and CUDA_HOME is not None:
                try:
                    nvcc = os.path.join(CUDA_HOME, "bin", "nvcc")
                    nvcc = subprocess.check_output("'{}' -V".format(nvcc), shell=True)
                    nvcc = nvcc.decode("utf-8").strip().split("\n")[-1]
                except subprocess.SubprocessError:
                    nvcc = "Not found"
                data.append(("CUDA compiler", nvcc))
        if has_cuda and sys.platform != "win32":
            try:
                so_file = importlib.util.find_spec("detectron2._C").origin
            except (ImportError, AttributeError):
                pass
            else:
                data.append(
                    (
                        "detectron2 arch flags",
                        detect_compute_compatibility(CUDA_HOME, so_file),
                    )
                )
    else:
        # print compilers that are used to build extension
        data.append(("Compiler", _C.get_compiler_version()))
        data.append(("CUDA compiler", _C.get_cuda_version()))  # cuda or hip
        if has_cuda and getattr(_C, "has_cuda", lambda: True)():
            data.append(
                (
                    "detectron2 arch flags",
                    detect_compute_compatibility(CUDA_HOME, _C.__file__),
                )
            )

    data.append(get_env_module())
    data.append(("PyTorch", torch_version + " @" + os.path.dirname(torch.__file__)))
    data.append(("PyTorch debug build", torch.version.debug))
    try:
        data.append(
            ("torch._C._GLIBCXX_USE_CXX11_ABI", torch._C._GLIBCXX_USE_CXX11_ABI)
        )
    except Exception:
        pass

    if not has_gpu:
        has_gpu_text = "No: torch.cuda.is_available() == False"
    else:
        has_gpu_text = "Yes"
    data.append(("GPU available", has_gpu_text))
    if has_gpu:
        devices = defaultdict(list)
        for k in range(torch.cuda.device_count()):
            cap = ".".join((str(x) for x in torch.cuda.get_device_capability(k)))
            name = torch.cuda.get_device_name(k) + f" (arch={cap})"
            devices[name].append(str(k))
        for name, devids in devices.items():
            data.append(("GPU " + ",".join(devids), name))

        if has_rocm:
            msg = " - invalid!" if not (ROCM_HOME and os.path.isdir(ROCM_HOME)) else ""
            data.append(("ROCM_HOME", str(ROCM_HOME) + msg))
        else:
            try:
                from torch.utils.collect_env import (
                    get_nvidia_driver_version,
                    run as _run,
                )

                data.append(("Driver version", get_nvidia_driver_version(_run)))
            except Exception:
                pass
            msg = " - invalid!" if not (CUDA_HOME and os.path.isdir(CUDA_HOME)) else ""
            data.append(("CUDA_HOME", str(CUDA_HOME) + msg))

            cuda_arch_list = os.environ.get("TORCH_CUDA_ARCH_LIST", None)
            if cuda_arch_list:
                data.append(("TORCH_CUDA_ARCH_LIST", cuda_arch_list))
    data.append(("Pillow", PIL.__version__))

    try:
        data.append(
            (
                "torchvision",
                str(torchvision.__version__)
                + " @"
                + os.path.dirname(torchvision.__file__),
            )
        )
        if has_cuda:
            try:
                torchvision_C = importlib.util.find_spec("torchvision._C").origin
                msg = detect_compute_compatibility(CUDA_HOME, torchvision_C)
                data.append(("torchvision arch flags", msg))
            except (ImportError, AttributeError):
                data.append(("torchvision._C", "Not found"))
    except AttributeError:
        data.append(("torchvision", "unknown"))

    try:
        import fvcore

        data.append(("fvcore", fvcore.__version__))
    except (ImportError, AttributeError):
        pass

    try:
        import iopath

        data.append(("iopath", iopath.__version__))
    except (ImportError, AttributeError):
        pass

    try:
        import cv2

        data.append(("cv2", cv2.__version__))
    except (ImportError, AttributeError):
        data.append(("cv2", "Not found"))
    env_str = tabulate(data) + "\n"
    env_str += collect_torch_env()
    return env_str


def test_nccl_ops():
    num_gpu = torch.cuda.device_count()
    if os.access("/tmp", os.W_OK):
        import torch.multiprocessing as mp

        dist_url = "file:///tmp/nccl_tmp_file"
        print("Testing NCCL connectivity ... this should not hang.")
        mp.spawn(
            _test_nccl_worker, nprocs=num_gpu, args=(num_gpu, dist_url), daemon=False
        )
        print("NCCL succeeded.")


def _test_nccl_worker(rank, num_gpu, dist_url):
    import torch.distributed as dist

    dist.init_process_group(
        backend="NCCL", init_method=dist_url, rank=rank, world_size=num_gpu
    )
    dist.barrier(device_ids=[rank])


def main() -> None:
    global x
    try:
        from detectron2.utils.collect_env import collect_env_info as f

        print(f())
    except ImportError:
        print(collect_env_info())

    if torch.cuda.is_available():
        num_gpu = torch.cuda.device_count()
        for k in range(num_gpu):
            device = f"cuda:{k}"
            try:
                x = torch.tensor([1, 2.0], dtype=torch.float32)
                x = x.to(device)
            except Exception as e:
                print(
                    f"Unable to copy tensor to device={device}: {e}. "
                    "Your CUDA environment is broken."
                )
        if num_gpu > 1:
            test_nccl_ops()


if __name__ == "__main__":
    main()  # pragma: no cover