Spaces:
ginipick
/
Running on Zero

File size: 9,906 Bytes
b213d84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
# Copyright (c) Facebook, Inc. and its affiliates.
import numpy as np
from typing import Callable, Dict, Optional, Tuple, Union
import fvcore.nn.weight_init as weight_init
import torch
from torch import nn
from torch.nn import functional as F

from detectron2.config import configurable
from detectron2.layers import Conv2d, ShapeSpec, get_norm
from detectron2.structures import ImageList
from detectron2.utils.registry import Registry

from ..backbone import Backbone, build_backbone
from ..postprocessing import sem_seg_postprocess
from .build import META_ARCH_REGISTRY

__all__ = [
    "SemanticSegmentor",
    "SEM_SEG_HEADS_REGISTRY",
    "SemSegFPNHead",
    "build_sem_seg_head",
]


SEM_SEG_HEADS_REGISTRY = Registry("SEM_SEG_HEADS")
SEM_SEG_HEADS_REGISTRY.__doc__ = """
Registry for semantic segmentation heads, which make semantic segmentation predictions
from feature maps.
"""


@META_ARCH_REGISTRY.register()
class SemanticSegmentor(nn.Module):
    """
    Main class for semantic segmentation architectures.
    """

    @configurable
    def __init__(
        self,
        *,
        backbone: Backbone,
        sem_seg_head: nn.Module,
        pixel_mean: Tuple[float],
        pixel_std: Tuple[float],
    ):
        """
        Args:
            backbone: a backbone module, must follow detectron2's backbone interface
            sem_seg_head: a module that predicts semantic segmentation from backbone features
            pixel_mean, pixel_std: list or tuple with #channels element, representing
                the per-channel mean and std to be used to normalize the input image
        """
        super().__init__()
        self.backbone = backbone
        self.sem_seg_head = sem_seg_head
        self.register_buffer("pixel_mean", torch.tensor(pixel_mean).view(-1, 1, 1), False)
        self.register_buffer("pixel_std", torch.tensor(pixel_std).view(-1, 1, 1), False)

    @classmethod
    def from_config(cls, cfg):
        backbone = build_backbone(cfg)
        sem_seg_head = build_sem_seg_head(cfg, backbone.output_shape())
        return {
            "backbone": backbone,
            "sem_seg_head": sem_seg_head,
            "pixel_mean": cfg.MODEL.PIXEL_MEAN,
            "pixel_std": cfg.MODEL.PIXEL_STD,
        }

    @property
    def device(self):
        return self.pixel_mean.device

    def forward(self, batched_inputs):
        """
        Args:
            batched_inputs: a list, batched outputs of :class:`DatasetMapper`.
                Each item in the list contains the inputs for one image.

                For now, each item in the list is a dict that contains:

                   * "image": Tensor, image in (C, H, W) format.
                   * "sem_seg": semantic segmentation ground truth
                   * Other information that's included in the original dicts, such as:
                     "height", "width" (int): the output resolution of the model (may be different
                     from input resolution), used in inference.


        Returns:
            list[dict]:
              Each dict is the output for one input image.
              The dict contains one key "sem_seg" whose value is a
              Tensor that represents the
              per-pixel segmentation prediced by the head.
              The prediction has shape KxHxW that represents the logits of
              each class for each pixel.
        """
        images = [x["image"].to(self.device) for x in batched_inputs]
        images = [(x - self.pixel_mean) / self.pixel_std for x in images]
        images = ImageList.from_tensors(
            images,
            self.backbone.size_divisibility,
            padding_constraints=self.backbone.padding_constraints,
        )

        features = self.backbone(images.tensor)

        if "sem_seg" in batched_inputs[0]:
            targets = [x["sem_seg"].to(self.device) for x in batched_inputs]
            targets = ImageList.from_tensors(
                targets,
                self.backbone.size_divisibility,
                self.sem_seg_head.ignore_value,
                self.backbone.padding_constraints,
            ).tensor
        else:
            targets = None
        results, losses = self.sem_seg_head(features, targets)

        if self.training:
            return losses

        processed_results = []
        for result, input_per_image, image_size in zip(results, batched_inputs, images.image_sizes):
            height = input_per_image.get("height", image_size[0])
            width = input_per_image.get("width", image_size[1])
            r = sem_seg_postprocess(result, image_size, height, width)
            processed_results.append({"sem_seg": r})
        return processed_results


def build_sem_seg_head(cfg, input_shape):
    """
    Build a semantic segmentation head from `cfg.MODEL.SEM_SEG_HEAD.NAME`.
    """
    name = cfg.MODEL.SEM_SEG_HEAD.NAME
    return SEM_SEG_HEADS_REGISTRY.get(name)(cfg, input_shape)


@SEM_SEG_HEADS_REGISTRY.register()
class SemSegFPNHead(nn.Module):
    """
    A semantic segmentation head described in :paper:`PanopticFPN`.
    It takes a list of FPN features as input, and applies a sequence of
    3x3 convs and upsampling to scale all of them to the stride defined by
    ``common_stride``. Then these features are added and used to make final
    predictions by another 1x1 conv layer.
    """

    @configurable
    def __init__(
        self,
        input_shape: Dict[str, ShapeSpec],
        *,
        num_classes: int,
        conv_dims: int,
        common_stride: int,
        loss_weight: float = 1.0,
        norm: Optional[Union[str, Callable]] = None,
        ignore_value: int = -1,
    ):
        """
        NOTE: this interface is experimental.

        Args:
            input_shape: shapes (channels and stride) of the input features
            num_classes: number of classes to predict
            conv_dims: number of output channels for the intermediate conv layers.
            common_stride: the common stride that all features will be upscaled to
            loss_weight: loss weight
            norm (str or callable): normalization for all conv layers
            ignore_value: category id to be ignored during training.
        """
        super().__init__()
        input_shape = sorted(input_shape.items(), key=lambda x: x[1].stride)
        if not len(input_shape):
            raise ValueError("SemSegFPNHead(input_shape=) cannot be empty!")
        self.in_features = [k for k, v in input_shape]
        feature_strides = [v.stride for k, v in input_shape]
        feature_channels = [v.channels for k, v in input_shape]

        self.ignore_value = ignore_value
        self.common_stride = common_stride
        self.loss_weight = loss_weight

        self.scale_heads = []
        for in_feature, stride, channels in zip(
            self.in_features, feature_strides, feature_channels
        ):
            head_ops = []
            head_length = max(1, int(np.log2(stride) - np.log2(self.common_stride)))
            for k in range(head_length):
                norm_module = get_norm(norm, conv_dims)
                conv = Conv2d(
                    channels if k == 0 else conv_dims,
                    conv_dims,
                    kernel_size=3,
                    stride=1,
                    padding=1,
                    bias=not norm,
                    norm=norm_module,
                    activation=F.relu,
                )
                weight_init.c2_msra_fill(conv)
                head_ops.append(conv)
                if stride != self.common_stride:
                    head_ops.append(
                        nn.Upsample(scale_factor=2, mode="bilinear", align_corners=False)
                    )
            self.scale_heads.append(nn.Sequential(*head_ops))
            self.add_module(in_feature, self.scale_heads[-1])
        self.predictor = Conv2d(conv_dims, num_classes, kernel_size=1, stride=1, padding=0)
        weight_init.c2_msra_fill(self.predictor)

    @classmethod
    def from_config(cls, cfg, input_shape: Dict[str, ShapeSpec]):
        return {
            "input_shape": {
                k: v for k, v in input_shape.items() if k in cfg.MODEL.SEM_SEG_HEAD.IN_FEATURES
            },
            "ignore_value": cfg.MODEL.SEM_SEG_HEAD.IGNORE_VALUE,
            "num_classes": cfg.MODEL.SEM_SEG_HEAD.NUM_CLASSES,
            "conv_dims": cfg.MODEL.SEM_SEG_HEAD.CONVS_DIM,
            "common_stride": cfg.MODEL.SEM_SEG_HEAD.COMMON_STRIDE,
            "norm": cfg.MODEL.SEM_SEG_HEAD.NORM,
            "loss_weight": cfg.MODEL.SEM_SEG_HEAD.LOSS_WEIGHT,
        }

    def forward(self, features, targets=None):
        """
        Returns:
            In training, returns (None, dict of losses)
            In inference, returns (CxHxW logits, {})
        """
        x = self.layers(features)
        if self.training:
            return None, self.losses(x, targets)
        else:
            x = F.interpolate(
                x, scale_factor=self.common_stride, mode="bilinear", align_corners=False
            )
            return x, {}

    def layers(self, features):
        for i, f in enumerate(self.in_features):
            if i == 0:
                x = self.scale_heads[i](features[f])
            else:
                x = x + self.scale_heads[i](features[f])
        x = self.predictor(x)
        return x

    def losses(self, predictions, targets):
        predictions = predictions.float()  # https://github.com/pytorch/pytorch/issues/48163
        predictions = F.interpolate(
            predictions,
            scale_factor=self.common_stride,
            mode="bilinear",
            align_corners=False,
        )
        loss = F.cross_entropy(
            predictions, targets, reduction="mean", ignore_index=self.ignore_value
        )
        losses = {"loss_sem_seg": loss * self.loss_weight}
        return losses