File size: 16,339 Bytes
b213d84 8fdc0c8 b213d84 24e151d 7778e32 afadbd4 80cec7b 99686f2 8fdc0c8 dcb1878 f7aa706 8fdc0c8 dcb1878 99686f2 8fdc0c8 80cec7b f7aa706 31c6398 f7aa706 8fdc0c8 f7aa706 dcb1878 f7aa706 31c6398 99686f2 24e151d 16c2627 31c6398 7778e32 dcb1878 f7aa706 dcb1878 f7aa706 b213d84 f7aa706 b213d84 f7aa706 b213d84 24e151d b213d84 f7aa706 b213d84 f7aa706 b213d84 f7aa706 b213d84 f7aa706 b213d84 f7aa706 b213d84 f7aa706 b213d84 f7aa706 b213d84 f7aa706 b213d84 f7aa706 b213d84 f7aa706 b213d84 24e151d f7aa706 7778e32 f7aa706 7778e32 f7aa706 7778e32 f7aa706 7778e32 24e151d 168e004 7778e32 24e151d 7778e32 24e151d 7778e32 24e151d 7778e32 24e151d 9ed5c4d 24e151d 168e004 7778e32 24e151d 7778e32 24e151d 7778e32 f7aa706 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 |
import numpy as np
from PIL import Image
from huggingface_hub import snapshot_download, login
from leffa.transform import LeffaTransform
from leffa.model import LeffaModel
from leffa.inference import LeffaInference
from utils.garment_agnostic_mask_predictor import AutoMasker
from utils.densepose_predictor import DensePosePredictor
from utils.utils import resize_and_center
import spaces
import torch
from diffusers import DiffusionPipeline
from transformers import pipeline
import gradio as gr
import os
import random
import gc
# ๋ฉ๋ชจ๋ฆฌ ๊ด๋ฆฌ ์ค์ ์ถ๊ฐ
import torch.backends.cuda
torch.backends.cuda.max_split_size_mb = 128 # ๋ฉ๋ชจ๋ฆฌ ๋ถํ ํฌ๊ธฐ ์ ํ
# ๋ฉ๋ชจ๋ฆฌ ๊ด๋ฆฌ ์ค์
torch.cuda.empty_cache()
gc.collect()
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:128'
torch.backends.cudnn.benchmark = True
torch.backends.cuda.matmul.allow_tf32 = True
def clear_memory():
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.synchronize()
gc.collect()
# ์์ ์ ์
MAX_SEED = 2**32 - 1
BASE_MODEL = "black-forest-labs/FLUX.1-dev"
MODEL_LORA_REPO = "Motas/Flux_Fashion_Photography_Style"
CLOTHES_LORA_REPO = "prithivMLmods/Canopus-Clothing-Flux-LoRA"
# Hugging Face ํ ํฐ ์ค์
HF_TOKEN = os.getenv("HF_TOKEN")
if HF_TOKEN is None:
raise ValueError("Please set the HF_TOKEN environment variable")
login(token=HF_TOKEN)
# CUDA ์ค์
device = "cuda" if torch.cuda.is_available() else "cpu"
# ๋ชจ๋ธ ๋ก๋ ํจ์
def load_model_with_optimization(model_class, *args, **kwargs):
torch.cuda.empty_cache()
gc.collect()
model = model_class(*args, **kwargs)
if device == "cuda":
model = model.half() # FP16์ผ๋ก ๋ณํ
return model.to(device)
# LoRA ๋ก๋ ํจ์
def load_lora(pipe, lora_path):
pipe.load_lora_weights(lora_path)
return pipe
# FLUX ๋ชจ๋ธ ์ด๊ธฐํ (ํ์ํ ๋๋ง ๋ก๋)
fashion_pipe = None
def get_fashion_pipe():
global fashion_pipe
if fashion_pipe is None:
torch.cuda.empty_cache()
fashion_pipe = DiffusionPipeline.from_pretrained(
BASE_MODEL,
torch_dtype=torch.float16,
use_auth_token=HF_TOKEN
)
try:
fashion_pipe.enable_xformers_memory_efficient_attention() # ์์ ๋ ๋ถ๋ถ
except Exception as e:
print(f"Warning: Could not enable memory efficient attention: {e}")
fashion_pipe.enable_sequential_cpu_offload()
return fashion_pipe
# ๋ฒ์ญ๊ธฐ ์ด๊ธฐํ (ํ์ํ ๋๋ง ๋ก๋)
translator = None
def get_translator():
global translator
if translator is None:
translator = pipeline("translation",
model="Helsinki-NLP/opus-mt-ko-en",
device=device if device == "cuda" else -1)
return translator
# Leffa ๋ชจ๋ธ ๊ด๋ จ ํจ์๋ค
def get_mask_predictor():
global mask_predictor
if mask_predictor is None:
mask_predictor = AutoMasker(
densepose_path="./ckpts/densepose",
schp_path="./ckpts/schp",
)
return mask_predictor
def get_densepose_predictor():
global densepose_predictor
if densepose_predictor is None:
densepose_predictor = DensePosePredictor(
config_path="./ckpts/densepose/densepose_rcnn_R_50_FPN_s1x.yaml",
weights_path="./ckpts/densepose/model_final_162be9.pkl",
)
return densepose_predictor
def get_vt_model():
global vt_model, vt_inference
if vt_model is None:
torch.cuda.empty_cache()
vt_model = load_model_with_optimization(
LeffaModel,
pretrained_model_name_or_path="./ckpts/stable-diffusion-inpainting",
pretrained_model="./ckpts/virtual_tryon.pth"
)
vt_inference = LeffaInference(model=vt_model)
return vt_model, vt_inference
def get_pt_model():
global pt_model, pt_inference
if pt_model is None:
torch.cuda.empty_cache()
pt_model = load_model_with_optimization(
LeffaModel,
pretrained_model_name_or_path="./ckpts/stable-diffusion-xl-1.0-inpainting-0.1",
pretrained_model="./ckpts/pose_transfer.pth"
)
pt_inference = LeffaInference(model=pt_model)
return pt_model, pt_inference
# Leffa ์ฒดํฌํฌ์ธํธ ๋ค์ด๋ก๋
snapshot_download(repo_id="franciszzj/Leffa", local_dir="./ckpts")
def contains_korean(text):
return any(ord('๊ฐ') <= ord(char) <= ord('ํฃ') for char in text)
@spaces.GPU()
def generate_fashion(prompt, mode, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
clear_memory() # ๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ
try:
if contains_korean(prompt):
translator = get_translator()
translated = translator(prompt)[0]['translation_text']
actual_prompt = translated
else:
actual_prompt = prompt
pipe = get_fashion_pipe()
# ๋ฉ๋ชจ๋ฆฌ ์ฌ์ฉ๋ ์ ํ์ ์ํ ํฌ๊ธฐ ์กฐ์
width = min(width, 768) # ์ต๋ ํฌ๊ธฐ ์ ํ
height = min(height, 768) # ์ต๋ ํฌ๊ธฐ ์ ํ
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device="cuda").manual_seed(seed)
progress(0, "Starting fashion generation...")
image = pipe(
prompt=f"{actual_prompt} {trigger_word}",
num_inference_steps=min(steps, 30), # ์คํ
์ ์ ํ
guidance_scale=cfg_scale,
width=width,
height=height,
generator=generator,
joint_attention_kwargs={"scale": lora_scale},
).images[0]
clear_memory() # ๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ
return image, seed
except Exception as e:
clear_memory() # ์ค๋ฅ ๋ฐ์ ์์๋ ๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ
raise e
def leffa_predict(src_image_path, ref_image_path, control_type):
torch.cuda.empty_cache()
assert control_type in [
"virtual_tryon", "pose_transfer"], "Invalid control type: {}".format(control_type)
# ์ด๋ฏธ์ง ๋ก๋ ๋ฐ ํฌ๊ธฐ ์กฐ์
src_image = Image.open(src_image_path)
ref_image = Image.open(ref_image_path)
src_image = resize_and_center(src_image, 768, 1024)
ref_image = resize_and_center(ref_image, 768, 1024)
src_image_array = np.array(src_image)
ref_image_array = np.array(ref_image)
# Mask ์์ฑ
if control_type == "virtual_tryon":
mask_pred = get_mask_predictor()
src_image = src_image.convert("RGB")
mask = mask_pred(src_image, "upper")["mask"]
elif control_type == "pose_transfer":
mask = Image.fromarray(np.ones_like(src_image_array) * 255)
# DensePose ์์ธก
dense_pred = get_densepose_predictor()
src_image_iuv_array = dense_pred.predict_iuv(src_image_array)
src_image_seg_array = dense_pred.predict_seg(src_image_array)
src_image_iuv = Image.fromarray(src_image_iuv_array)
src_image_seg = Image.fromarray(src_image_seg_array)
if control_type == "virtual_tryon":
densepose = src_image_seg
model, inference = get_vt_model()
elif control_type == "pose_transfer":
densepose = src_image_iuv
model, inference = get_pt_model()
# Leffa ๋ณํ ๋ฐ ์ถ๋ก
transform = LeffaTransform()
data = {
"src_image": [src_image],
"ref_image": [ref_image],
"mask": [mask],
"densepose": [densepose],
}
data = transform(data)
output = inference(data)
gen_image = output["generated_image"][0]
torch.cuda.empty_cache()
return np.array(gen_image)
def leffa_predict_vt(src_image_path, ref_image_path):
return leffa_predict(src_image_path, ref_image_path, "virtual_tryon")
def leffa_predict_pt(src_image_path, ref_image_path):
return leffa_predict(src_image_path, ref_image_path, "pose_transfer")
# Gradio ์ธํฐํ์ด์ค
with gr.Blocks(theme=gr.themes.Default(primary_hue=gr.themes.colors.pink, secondary_hue=gr.themes.colors.red)) as demo:
gr.Markdown("# ๐ญ Fashion Studio & Virtual Try-on")
with gr.Tabs():
# ํจ์
์์ฑ ํญ
with gr.Tab("Fashion Generation"):
with gr.Column():
mode = gr.Radio(
choices=["Generate Model", "Generate Clothes"],
label="Generation Mode",
value="Generate Model"
)
prompt = gr.TextArea(
label="Fashion Description (ํ๊ธ ๋๋ ์์ด)",
placeholder="ํจ์
๋ชจ๋ธ์ด๋ ์๋ฅ๋ฅผ ์ค๋ช
ํ์ธ์..."
)
with gr.Row():
with gr.Column():
result = gr.Image(label="Generated Result")
generate_button = gr.Button("Generate Fashion")
with gr.Accordion("Advanced Options", open=False):
with gr.Group():
with gr.Row():
with gr.Column():
cfg_scale = gr.Slider(
label="CFG Scale",
minimum=1,
maximum=20,
step=0.5,
value=7.0
)
steps = gr.Slider(
label="Steps",
minimum=1,
maximum=50, # ์ต๋๊ฐ ๊ฐ์
step=1,
value=30
)
lora_scale = gr.Slider(
label="LoRA Scale",
minimum=0,
maximum=1,
step=0.01,
value=0.85
)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=1024, # ์ต๋๊ฐ ๊ฐ์
step=64,
value=512
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=1024, # ์ต๋๊ฐ ๊ฐ์
step=64,
value=768
)
with gr.Row():
randomize_seed = gr.Checkbox(
True,
label="Randomize seed"
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42
)
# ๊ฐ์ ํผํ
ํญ
with gr.Tab("Virtual Try-on"):
with gr.Row():
with gr.Column():
gr.Markdown("#### Person Image")
vt_src_image = gr.Image(
sources=["upload"],
type="filepath",
label="Person Image",
width=512,
height=512,
)
gr.Examples(
inputs=vt_src_image,
examples_per_page=5,
examples=["./ckpts/examples/person1/01350_00.jpg",
"./ckpts/examples/person1/01376_00.jpg",
"./ckpts/examples/person1/01416_00.jpg",
"./ckpts/examples/person1/05976_00.jpg",
"./ckpts/examples/person1/06094_00.jpg"]
)
with gr.Column():
gr.Markdown("#### Garment Image")
vt_ref_image = gr.Image(
sources=["upload"],
type="filepath",
label="Garment Image",
width=512,
height=512,
)
gr.Examples(
inputs=vt_ref_image,
examples_per_page=5,
examples=["./ckpts/examples/garment/01449_00.jpg",
"./ckpts/examples/garment/01486_00.jpg",
"./ckpts/examples/garment/01853_00.jpg",
"./ckpts/examples/garment/02070_00.jpg",
"./ckpts/examples/garment/03553_00.jpg"]
)
with gr.Column():
gr.Markdown("#### Generated Image")
vt_gen_image = gr.Image(
label="Generated Image",
width=512,
height=512,
)
vt_gen_button = gr.Button("Try-on")
# ํฌ์ฆ ์ ์ก ํญ
with gr.Tab("Pose Transfer"):
with gr.Row():
with gr.Column():
gr.Markdown("#### Person Image")
pt_ref_image = gr.Image(
sources=["upload"],
type="filepath",
label="Person Image",
width=512,
height=512,
)
gr.Examples(
inputs=pt_ref_image,
examples_per_page=5,
examples=["./ckpts/examples/person1/01350_00.jpg",
"./ckpts/examples/person1/01376_00.jpg",
"./ckpts/examples/person1/01416_00.jpg",
"./ckpts/examples/person1/05976_00.jpg",
"./ckpts/examples/person1/06094_00.jpg"]
)
with gr.Column():
gr.Markdown("#### Target Pose Person Image")
pt_src_image = gr.Image(
sources=["upload"],
type="filepath",
label="Target Pose Person Image",
width=512,
height=512,
)
gr.Examples(
inputs=pt_src_image,
examples_per_page=5,
examples=["./ckpts/examples/person2/01850_00.jpg",
"./ckpts/examples/person2/01875_00.jpg",
"./ckpts/examples/person2/02532_00.jpg",
"./ckpts/examples/person2/02902_00.jpg",
"./ckpts/examples/person2/05346_00.jpg"]
)
with gr.Column():
gr.Markdown("#### Generated Image")
pt_gen_image = gr.Image(
label="Generated Image",
width=512,
height=512,
)
pose_transfer_gen_button = gr.Button("Generate")
# ์ด๋ฒคํธ ํธ๋ค๋ฌ
generate_button.click(
generate_fashion,
inputs=[prompt, mode, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale],
outputs=[result, seed]
)
vt_gen_button.click(
fn=leffa_predict_vt,
inputs=[vt_src_image, vt_ref_image],
outputs=[vt_gen_image]
)
pose_transfer_gen_button.click(
fn=leffa_predict_pt,
inputs=[pt_src_image, pt_ref_image],
outputs=[pt_gen_image]
)
# ์ฑ ์คํ
demo.launch(share=True, server_port=7860) |