Spaces:
ginipick
/
Running on Zero

File size: 4,801 Bytes
b213d84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
# Copyright (c) Facebook, Inc. and its affiliates.

import random
from typing import Optional, Tuple
import torch

from densepose.converters import ToChartResultConverterWithConfidences

from .densepose_base import DensePoseBaseSampler


class DensePoseConfidenceBasedSampler(DensePoseBaseSampler):
    """
    Samples DensePose data from DensePose predictions.
    Samples for each class are drawn using confidence value estimates.
    """

    def __init__(
        self,
        confidence_channel: str,
        count_per_class: int = 8,
        search_count_multiplier: Optional[float] = None,
        search_proportion: Optional[float] = None,
    ):
        """
        Constructor

        Args:
          confidence_channel (str): confidence channel to use for sampling;
            possible values:
              "sigma_2": confidences for UV values
              "fine_segm_confidence": confidences for fine segmentation
              "coarse_segm_confidence": confidences for coarse segmentation
            (default: "sigma_2")
          count_per_class (int): the sampler produces at most `count_per_class`
              samples for each category (default: 8)
          search_count_multiplier (float or None): if not None, the total number
              of the most confident estimates of a given class to consider is
              defined as `min(search_count_multiplier * count_per_class, N)`,
              where `N` is the total number of estimates of the class; cannot be
              specified together with `search_proportion` (default: None)
          search_proportion (float or None): if not None, the total number of the
              of the most confident estimates of a given class to consider is
              defined as `min(max(search_proportion * N, count_per_class), N)`,
              where `N` is the total number of estimates of the class; cannot be
              specified together with `search_count_multiplier` (default: None)
        """
        super().__init__(count_per_class)
        self.confidence_channel = confidence_channel
        self.search_count_multiplier = search_count_multiplier
        self.search_proportion = search_proportion
        assert (search_count_multiplier is None) or (search_proportion is None), (
            f"Cannot specify both search_count_multiplier (={search_count_multiplier})"
            f"and search_proportion (={search_proportion})"
        )

    def _produce_index_sample(self, values: torch.Tensor, count: int):
        """
        Produce a sample of indices to select data based on confidences

        Args:
            values (torch.Tensor): an array of size [n, k] that contains
                estimated values (U, V, confidences);
                n: number of channels (U, V, confidences)
                k: number of points labeled with part_id
            count (int): number of samples to produce, should be positive and <= k

        Return:
            list(int): indices of values (along axis 1) selected as a sample
        """
        k = values.shape[1]
        if k == count:
            index_sample = list(range(k))
        else:
            # take the best count * search_count_multiplier pixels,
            # sample from them uniformly
            # (here best = smallest variance)
            _, sorted_confidence_indices = torch.sort(values[2])
            if self.search_count_multiplier is not None:
                search_count = min(int(count * self.search_count_multiplier), k)
            elif self.search_proportion is not None:
                search_count = min(max(int(k * self.search_proportion), count), k)
            else:
                search_count = min(count, k)
            sample_from_top = random.sample(range(search_count), count)
            index_sample = sorted_confidence_indices[:search_count][sample_from_top]
        return index_sample

    def _produce_labels_and_results(self, instance) -> Tuple[torch.Tensor, torch.Tensor]:
        """
        Method to get labels and DensePose results from an instance, with confidences

        Args:
            instance (Instances): an instance of `DensePoseChartPredictorOutputWithConfidences`

        Return:
            labels (torch.Tensor): shape [H, W], DensePose segmentation labels
            dp_result (torch.Tensor): shape [3, H, W], DensePose results u and v
                stacked with the confidence channel
        """
        converter = ToChartResultConverterWithConfidences
        chart_result = converter.convert(instance.pred_densepose, instance.pred_boxes)
        labels, dp_result = chart_result.labels.cpu(), chart_result.uv.cpu()
        dp_result = torch.cat(
            (dp_result, getattr(chart_result, self.confidence_channel)[None].cpu())
        )

        return labels, dp_result