Spaces:
ginipick
/
Running on Zero

FitGen / leffa /inference.py
franciszzj's picture
init code
b213d84
raw
history blame
2.06 kB
from typing import Any, Dict, Optional
import numpy as np
import torch
import torch.nn as nn
from leffa.pipeline import LeffaPipeline
def pil_to_tensor(images):
images = np.array(images).astype(np.float32) / 255.0
images = torch.from_numpy(images.transpose(2, 0, 1))
return images
class LeffaInference(object):
def __init__(
self,
model: nn.Module,
ckpt_path: Optional[str] = None,
repaint: bool = False,
) -> None:
self.model: torch.nn.Module = model
self.device = "cuda" if torch.cuda.is_available() else "cpu"
# load model
if ckpt_path is not None:
self.model.load_state_dict(torch.load(ckpt_path, map_location="cpu"))
self.model = self.model.to(self.device)
self.model.eval()
self.pipe = LeffaPipeline(model=self.model, repaint=repaint)
def to_gpu(self, data: Dict[str, Any]) -> Dict[str, Any]:
for k, v in data.items():
if isinstance(v, torch.Tensor):
data[k] = v.to(self.device)
return data
def __call__(self, data: Dict[str, Any], **kwargs) -> Dict[str, Any]:
data = self.to_gpu(data)
num_inference_steps = kwargs.get("num_inference_steps", 50)
guidance_scale = kwargs.get("guidance_scale", 2.5)
seed = kwargs.get("seed", 42)
generator = torch.Generator(self.pipe.device).manual_seed(seed)
images = self.pipe(
src_image=data["src_image"],
ref_image=data["ref_image"],
mask=data["mask"],
densepose=data["densepose"],
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
generator=generator,
)[0]
# images = [pil_to_tensor(image) for image in images]
# images = torch.stack(images)
outputs = {}
outputs["src_image"] = (data["src_image"] + 1.0) / 2.0
outputs["ref_image"] = (data["ref_image"] + 1.0) / 2.0
outputs["generated_image"] = images
return outputs