Spaces:
ginipick
/
Running on Zero

FitGen / detectron2 /tracking /vanilla_hungarian_bbox_iou_tracker.py
franciszzj's picture
init code
b213d84
#!/usr/bin/env python3
# Copyright 2004-present Facebook. All Rights Reserved.
import numpy as np
from typing import List
from detectron2.config import CfgNode as CfgNode_
from detectron2.config import configurable
from detectron2.structures import Instances
from detectron2.structures.boxes import pairwise_iou
from detectron2.tracking.utils import LARGE_COST_VALUE, create_prediction_pairs
from .base_tracker import TRACKER_HEADS_REGISTRY
from .hungarian_tracker import BaseHungarianTracker
@TRACKER_HEADS_REGISTRY.register()
class VanillaHungarianBBoxIOUTracker(BaseHungarianTracker):
"""
Hungarian algo based tracker using bbox iou as metric
"""
@configurable
def __init__(
self,
*,
video_height: int,
video_width: int,
max_num_instances: int = 200,
max_lost_frame_count: int = 0,
min_box_rel_dim: float = 0.02,
min_instance_period: int = 1,
track_iou_threshold: float = 0.5,
**kwargs,
):
"""
Args:
video_height: height the video frame
video_width: width of the video frame
max_num_instances: maximum number of id allowed to be tracked
max_lost_frame_count: maximum number of frame an id can lost tracking
exceed this number, an id is considered as lost
forever
min_box_rel_dim: a percentage, smaller than this dimension, a bbox is
removed from tracking
min_instance_period: an instance will be shown after this number of period
since its first showing up in the video
track_iou_threshold: iou threshold, below this number a bbox pair is removed
from tracking
"""
super().__init__(
video_height=video_height,
video_width=video_width,
max_num_instances=max_num_instances,
max_lost_frame_count=max_lost_frame_count,
min_box_rel_dim=min_box_rel_dim,
min_instance_period=min_instance_period,
)
self._track_iou_threshold = track_iou_threshold
@classmethod
def from_config(cls, cfg: CfgNode_):
"""
Old style initialization using CfgNode
Args:
cfg: D2 CfgNode, config file
Return:
dictionary storing arguments for __init__ method
"""
assert "VIDEO_HEIGHT" in cfg.TRACKER_HEADS
assert "VIDEO_WIDTH" in cfg.TRACKER_HEADS
video_height = cfg.TRACKER_HEADS.get("VIDEO_HEIGHT")
video_width = cfg.TRACKER_HEADS.get("VIDEO_WIDTH")
max_num_instances = cfg.TRACKER_HEADS.get("MAX_NUM_INSTANCES", 200)
max_lost_frame_count = cfg.TRACKER_HEADS.get("MAX_LOST_FRAME_COUNT", 0)
min_box_rel_dim = cfg.TRACKER_HEADS.get("MIN_BOX_REL_DIM", 0.02)
min_instance_period = cfg.TRACKER_HEADS.get("MIN_INSTANCE_PERIOD", 1)
track_iou_threshold = cfg.TRACKER_HEADS.get("TRACK_IOU_THRESHOLD", 0.5)
return {
"_target_": "detectron2.tracking.vanilla_hungarian_bbox_iou_tracker.VanillaHungarianBBoxIOUTracker", # noqa
"video_height": video_height,
"video_width": video_width,
"max_num_instances": max_num_instances,
"max_lost_frame_count": max_lost_frame_count,
"min_box_rel_dim": min_box_rel_dim,
"min_instance_period": min_instance_period,
"track_iou_threshold": track_iou_threshold,
}
def build_cost_matrix(self, instances: Instances, prev_instances: Instances) -> np.ndarray:
"""
Build the cost matrix for assignment problem
(https://en.wikipedia.org/wiki/Assignment_problem)
Args:
instances: D2 Instances, for current frame predictions
prev_instances: D2 Instances, for previous frame predictions
Return:
the cost matrix in numpy array
"""
assert instances is not None and prev_instances is not None
# calculate IoU of all bbox pairs
iou_all = pairwise_iou(
boxes1=instances.pred_boxes,
boxes2=self._prev_instances.pred_boxes,
)
bbox_pairs = create_prediction_pairs(
instances, self._prev_instances, iou_all, threshold=self._track_iou_threshold
)
# assign large cost value to make sure pair below IoU threshold won't be matched
cost_matrix = np.full((len(instances), len(prev_instances)), LARGE_COST_VALUE)
return self.assign_cost_matrix_values(cost_matrix, bbox_pairs)
def assign_cost_matrix_values(self, cost_matrix: np.ndarray, bbox_pairs: List) -> np.ndarray:
"""
Based on IoU for each pair of bbox, assign the associated value in cost matrix
Args:
cost_matrix: np.ndarray, initialized 2D array with target dimensions
bbox_pairs: list of bbox pair, in each pair, iou value is stored
Return:
np.ndarray, cost_matrix with assigned values
"""
for pair in bbox_pairs:
# assign -1 for IoU above threshold pairs, algorithms will minimize cost
cost_matrix[pair["idx"]][pair["prev_idx"]] = -1
return cost_matrix