Update app.py
Browse files
app.py
CHANGED
@@ -15,9 +15,7 @@ import gradio as gr
|
|
15 |
import os
|
16 |
import random
|
17 |
import gc
|
18 |
-
from contextlib import contextmanager
|
19 |
-
|
20 |
-
|
21 |
|
22 |
# 상수 정의
|
23 |
MAX_SEED = 2**32 - 1
|
@@ -39,7 +37,6 @@ def safe_model_call(func):
|
|
39 |
raise
|
40 |
return wrapper
|
41 |
|
42 |
-
|
43 |
# 메모리 관리를 위한 컨텍스트 매니저
|
44 |
@contextmanager
|
45 |
def torch_gc():
|
@@ -54,7 +51,6 @@ def torch_gc():
|
|
54 |
def clear_memory():
|
55 |
gc.collect()
|
56 |
|
57 |
-
|
58 |
def setup_environment():
|
59 |
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:128'
|
60 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
@@ -63,17 +59,6 @@ def setup_environment():
|
|
63 |
login(token=HF_TOKEN)
|
64 |
return HF_TOKEN
|
65 |
|
66 |
-
@contextmanager
|
67 |
-
def torch_gc():
|
68 |
-
try:
|
69 |
-
yield
|
70 |
-
finally:
|
71 |
-
gc.collect()
|
72 |
-
if torch.cuda.is_available() and torch.cuda.current_device() >= 0:
|
73 |
-
with torch.cuda.device('cuda'):
|
74 |
-
torch.cuda.empty_cache()
|
75 |
-
|
76 |
-
|
77 |
def contains_korean(text):
|
78 |
return any(ord('가') <= ord(char) <= ord('힣') for char in text)
|
79 |
|
@@ -81,7 +66,6 @@ def contains_korean(text):
|
|
81 |
def get_translator():
|
82 |
return pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en", device="cuda")
|
83 |
|
84 |
-
|
85 |
# 환경 설정 실행
|
86 |
setup_environment()
|
87 |
|
@@ -97,7 +81,7 @@ def initialize_fashion_pipe():
|
|
97 |
def setup():
|
98 |
# Leffa 체크포인트 다운로드만 수행
|
99 |
snapshot_download(repo_id="franciszzj/Leffa", local_dir="./ckpts")
|
100 |
-
|
101 |
@spaces.GPU()
|
102 |
def get_translator():
|
103 |
with torch_gc():
|
@@ -135,20 +119,6 @@ def get_vt_model():
|
|
135 |
model = model.half()
|
136 |
return model.to("cuda"), LeffaInference(model=model)
|
137 |
|
138 |
-
@spaces.GPU()
|
139 |
-
def get_pt_model():
|
140 |
-
try:
|
141 |
-
model = LeffaModel(
|
142 |
-
pretrained_model_name_or_path="./ckpts/stable-diffusion-xl-1.0-inpainting-0.1",
|
143 |
-
pretrained_model="./ckpts/pose_transfer.pth"
|
144 |
-
)
|
145 |
-
model = model.half().to("cuda")
|
146 |
-
inference = LeffaInference(model=model)
|
147 |
-
return model, inference
|
148 |
-
except Exception as e:
|
149 |
-
print(f"Error in get_pt_model: {str(e)}")
|
150 |
-
raise
|
151 |
-
|
152 |
def load_lora(pipe, lora_path):
|
153 |
try:
|
154 |
pipe.unload_lora_weights()
|
@@ -170,11 +140,6 @@ def get_mask_predictor():
|
|
170 |
schp_path="./ckpts/schp",
|
171 |
)
|
172 |
return mask_predictor
|
173 |
-
|
174 |
-
# 유틸리티 함수
|
175 |
-
def contains_korean(text):
|
176 |
-
return any(ord('가') <= ord(char) <= ord('힣') for char in text)
|
177 |
-
|
178 |
|
179 |
# 모델 초기화 함수 수정
|
180 |
@spaces.GPU()
|
@@ -192,7 +157,6 @@ def initialize_fashion_pipe():
|
|
192 |
print(f"Error initializing fashion pipe: {e}")
|
193 |
raise
|
194 |
|
195 |
-
# 생성 함수 수정
|
196 |
@spaces.GPU()
|
197 |
def generate_fashion(prompt, mode, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
|
198 |
try:
|
@@ -291,10 +255,7 @@ def leffa_predict(src_image_path, ref_image_path, control_type):
|
|
291 |
try:
|
292 |
with torch_gc():
|
293 |
# 모델 초기화
|
294 |
-
|
295 |
-
model, inference = get_vt_model()
|
296 |
-
else:
|
297 |
-
model, inference = get_pt_model()
|
298 |
|
299 |
# 이미지 처리
|
300 |
src_image = Image.open(src_image_path)
|
@@ -307,21 +268,13 @@ def leffa_predict(src_image_path, ref_image_path, control_type):
|
|
307 |
|
308 |
# Mask 및 DensePose 처리
|
309 |
with torch.inference_mode():
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
mask = mask_pred(src_image, "upper")["mask"]
|
314 |
-
else:
|
315 |
-
mask = Image.fromarray(np.ones_like(src_image_array) * 255)
|
316 |
|
317 |
dense_pred = model_manager.get_densepose_predictor()
|
318 |
-
src_image_iuv_array = dense_pred.predict_iuv(src_image_array)
|
319 |
src_image_seg_array = dense_pred.predict_seg(src_image_array)
|
320 |
-
|
321 |
-
if control_type == "virtual_tryon":
|
322 |
-
densepose = Image.fromarray(src_image_seg_array)
|
323 |
-
else:
|
324 |
-
densepose = Image.fromarray(src_image_iuv_array)
|
325 |
|
326 |
# Leffa 변환 및 추론
|
327 |
transform = LeffaTransform()
|
@@ -348,8 +301,6 @@ def leffa_predict(src_image_path, ref_image_path, control_type):
|
|
348 |
print(f"Error in leffa_predict: {str(e)}")
|
349 |
raise
|
350 |
|
351 |
-
|
352 |
-
|
353 |
@spaces.GPU()
|
354 |
def leffa_predict_vt(src_image_path, ref_image_path):
|
355 |
try:
|
@@ -358,14 +309,6 @@ def leffa_predict_vt(src_image_path, ref_image_path):
|
|
358 |
print(f"Error in leffa_predict_vt: {str(e)}")
|
359 |
raise
|
360 |
|
361 |
-
@spaces.GPU()
|
362 |
-
def leffa_predict_pt(src_image_path, ref_image_path):
|
363 |
-
try:
|
364 |
-
return leffa_predict(src_image_path, ref_image_path, "pose_transfer")
|
365 |
-
except Exception as e:
|
366 |
-
print(f"Error in leffa_predict_pt: {str(e)}")
|
367 |
-
raise
|
368 |
-
|
369 |
@spaces.GPU()
|
370 |
def generate_image(prompt, mode, cfg_scale=7.0, steps=30, seed=None, width=512, height=768, lora_scale=0.85):
|
371 |
try:
|
@@ -379,7 +322,6 @@ def generate_image(prompt, mode, cfg_scale=7.0, steps=30, seed=None, width=512,
|
|
379 |
else:
|
380 |
actual_prompt = prompt
|
381 |
|
382 |
-
|
383 |
# 파이프라인 초기화
|
384 |
pipe = DiffusionPipeline.from_pretrained(
|
385 |
BASE_MODEL,
|
@@ -413,16 +355,14 @@ def generate_image(prompt, mode, cfg_scale=7.0, steps=30, seed=None, width=512,
|
|
413 |
del pipe
|
414 |
return result, seed
|
415 |
|
416 |
-
|
417 |
except Exception as e:
|
418 |
raise gr.Error(f"Generation failed: {str(e)}")
|
419 |
|
420 |
-
|
421 |
# 초기 설정 실행
|
422 |
setup()
|
|
|
423 |
def create_interface():
|
424 |
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange") as demo:
|
425 |
-
|
426 |
gr.Markdown("# 🎭 FitGen:Fashion Studio & Virtual Try-on")
|
427 |
|
428 |
with gr.Tabs():
|
@@ -570,71 +510,11 @@ def create_interface():
|
|
570 |
)
|
571 |
vt_gen_button = gr.Button("Try-on")
|
572 |
|
573 |
-
# 포즈 전송 탭
|
574 |
-
with gr.Tab("Pose Transfer"):
|
575 |
-
with gr.Row():
|
576 |
-
with gr.Column():
|
577 |
-
gr.Markdown("#### Person Image")
|
578 |
-
pt_ref_image = gr.Image(
|
579 |
-
sources=["upload"],
|
580 |
-
type="filepath",
|
581 |
-
label="Person Image",
|
582 |
-
width=512,
|
583 |
-
height=512,
|
584 |
-
)
|
585 |
-
gr.Examples(
|
586 |
-
inputs=pt_ref_image,
|
587 |
-
examples_per_page=5,
|
588 |
-
examples=["a1.webp",
|
589 |
-
"a2.webp",
|
590 |
-
"a3.webp",
|
591 |
-
"a4.webp",
|
592 |
-
"a5.webp"]
|
593 |
-
)
|
594 |
-
|
595 |
-
with gr.Column():
|
596 |
-
gr.Markdown("#### Target Pose Person Image")
|
597 |
-
pt_src_image = gr.Image(
|
598 |
-
sources=["upload"],
|
599 |
-
type="filepath",
|
600 |
-
label="Target Pose Person Image",
|
601 |
-
width=512,
|
602 |
-
height=512,
|
603 |
-
)
|
604 |
-
gr.Examples(
|
605 |
-
inputs=pt_src_image,
|
606 |
-
examples_per_page=5,
|
607 |
-
examples=["d1.webp",
|
608 |
-
"d2.webp",
|
609 |
-
"d3.webp",
|
610 |
-
"d4.webp",
|
611 |
-
"d5.webp"]
|
612 |
-
)
|
613 |
-
|
614 |
-
with gr.Column():
|
615 |
-
gr.Markdown("#### Generated Image")
|
616 |
-
pt_gen_image = gr.Image(
|
617 |
-
label="Generated Image",
|
618 |
-
width=512,
|
619 |
-
height=512,
|
620 |
-
)
|
621 |
-
pose_transfer_gen_button = gr.Button("Generate")
|
622 |
-
|
623 |
-
|
624 |
-
|
625 |
vt_gen_button.click(
|
626 |
fn=leffa_predict_vt,
|
627 |
inputs=[vt_src_image, vt_ref_image],
|
628 |
outputs=[vt_gen_image]
|
629 |
)
|
630 |
-
|
631 |
-
pose_transfer_gen_button.click(
|
632 |
-
fn=leffa_predict_pt,
|
633 |
-
inputs=[pt_src_image, pt_ref_image],
|
634 |
-
outputs=[pt_gen_image]
|
635 |
-
)
|
636 |
-
|
637 |
-
|
638 |
|
639 |
generate_button.click(
|
640 |
fn=generate_image,
|
|
|
15 |
import os
|
16 |
import random
|
17 |
import gc
|
18 |
+
from contextlib import contextmanager
|
|
|
|
|
19 |
|
20 |
# 상수 정의
|
21 |
MAX_SEED = 2**32 - 1
|
|
|
37 |
raise
|
38 |
return wrapper
|
39 |
|
|
|
40 |
# 메모리 관리를 위한 컨텍스트 매니저
|
41 |
@contextmanager
|
42 |
def torch_gc():
|
|
|
51 |
def clear_memory():
|
52 |
gc.collect()
|
53 |
|
|
|
54 |
def setup_environment():
|
55 |
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:128'
|
56 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
|
|
59 |
login(token=HF_TOKEN)
|
60 |
return HF_TOKEN
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
def contains_korean(text):
|
63 |
return any(ord('가') <= ord(char) <= ord('힣') for char in text)
|
64 |
|
|
|
66 |
def get_translator():
|
67 |
return pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en", device="cuda")
|
68 |
|
|
|
69 |
# 환경 설정 실행
|
70 |
setup_environment()
|
71 |
|
|
|
81 |
def setup():
|
82 |
# Leffa 체크포인트 다운로드만 수행
|
83 |
snapshot_download(repo_id="franciszzj/Leffa", local_dir="./ckpts")
|
84 |
+
|
85 |
@spaces.GPU()
|
86 |
def get_translator():
|
87 |
with torch_gc():
|
|
|
119 |
model = model.half()
|
120 |
return model.to("cuda"), LeffaInference(model=model)
|
121 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
def load_lora(pipe, lora_path):
|
123 |
try:
|
124 |
pipe.unload_lora_weights()
|
|
|
140 |
schp_path="./ckpts/schp",
|
141 |
)
|
142 |
return mask_predictor
|
|
|
|
|
|
|
|
|
|
|
143 |
|
144 |
# 모델 초기화 함수 수정
|
145 |
@spaces.GPU()
|
|
|
157 |
print(f"Error initializing fashion pipe: {e}")
|
158 |
raise
|
159 |
|
|
|
160 |
@spaces.GPU()
|
161 |
def generate_fashion(prompt, mode, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
|
162 |
try:
|
|
|
255 |
try:
|
256 |
with torch_gc():
|
257 |
# 모델 초기화
|
258 |
+
model, inference = get_vt_model()
|
|
|
|
|
|
|
259 |
|
260 |
# 이미지 처리
|
261 |
src_image = Image.open(src_image_path)
|
|
|
268 |
|
269 |
# Mask 및 DensePose 처리
|
270 |
with torch.inference_mode():
|
271 |
+
src_image = src_image.convert("RGB")
|
272 |
+
mask_pred = model_manager.get_mask_predictor()
|
273 |
+
mask = mask_pred(src_image, "upper")["mask"]
|
|
|
|
|
|
|
274 |
|
275 |
dense_pred = model_manager.get_densepose_predictor()
|
|
|
276 |
src_image_seg_array = dense_pred.predict_seg(src_image_array)
|
277 |
+
densepose = Image.fromarray(src_image_seg_array)
|
|
|
|
|
|
|
|
|
278 |
|
279 |
# Leffa 변환 및 추론
|
280 |
transform = LeffaTransform()
|
|
|
301 |
print(f"Error in leffa_predict: {str(e)}")
|
302 |
raise
|
303 |
|
|
|
|
|
304 |
@spaces.GPU()
|
305 |
def leffa_predict_vt(src_image_path, ref_image_path):
|
306 |
try:
|
|
|
309 |
print(f"Error in leffa_predict_vt: {str(e)}")
|
310 |
raise
|
311 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
312 |
@spaces.GPU()
|
313 |
def generate_image(prompt, mode, cfg_scale=7.0, steps=30, seed=None, width=512, height=768, lora_scale=0.85):
|
314 |
try:
|
|
|
322 |
else:
|
323 |
actual_prompt = prompt
|
324 |
|
|
|
325 |
# 파이프라인 초기화
|
326 |
pipe = DiffusionPipeline.from_pretrained(
|
327 |
BASE_MODEL,
|
|
|
355 |
del pipe
|
356 |
return result, seed
|
357 |
|
|
|
358 |
except Exception as e:
|
359 |
raise gr.Error(f"Generation failed: {str(e)}")
|
360 |
|
|
|
361 |
# 초기 설정 실행
|
362 |
setup()
|
363 |
+
|
364 |
def create_interface():
|
365 |
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange") as demo:
|
|
|
366 |
gr.Markdown("# 🎭 FitGen:Fashion Studio & Virtual Try-on")
|
367 |
|
368 |
with gr.Tabs():
|
|
|
510 |
)
|
511 |
vt_gen_button = gr.Button("Try-on")
|
512 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
513 |
vt_gen_button.click(
|
514 |
fn=leffa_predict_vt,
|
515 |
inputs=[vt_src_image, vt_ref_image],
|
516 |
outputs=[vt_gen_image]
|
517 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
518 |
|
519 |
generate_button.click(
|
520 |
fn=generate_image,
|