import numpy as np from PIL import Image from huggingface_hub import snapshot_download, login from leffa.transform import LeffaTransform from leffa.model import LeffaModel from leffa.inference import LeffaInference from utils.garment_agnostic_mask_predictor import AutoMasker from utils.densepose_predictor import DensePosePredictor from utils.utils import resize_and_center import spaces import torch from diffusers import DiffusionPipeline from transformers import pipeline import gradio as gr import os import random import gc # 메모리 관리 설정 torch.cuda.empty_cache() gc.collect() os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:128' torch.backends.cudnn.benchmark = True torch.backends.cuda.matmul.allow_tf32 = True # 상수 정의 MAX_SEED = 2**32 - 1 BASE_MODEL = "black-forest-labs/FLUX.1-dev" MODEL_LORA_REPO = "Motas/Flux_Fashion_Photography_Style" CLOTHES_LORA_REPO = "prithivMLmods/Canopus-Clothing-Flux-LoRA" # Hugging Face 토큰 설정 HF_TOKEN = os.getenv("HF_TOKEN") if HF_TOKEN is None: raise ValueError("Please set the HF_TOKEN environment variable") login(token=HF_TOKEN) # CUDA 설정 device = "cuda" if torch.cuda.is_available() else "cpu" # 모델 로드 함수 def load_model_with_optimization(model_class, *args, **kwargs): torch.cuda.empty_cache() gc.collect() model = model_class(*args, **kwargs) if device == "cuda": model = model.half() # FP16으로 변환 return model.to(device) # LoRA 로드 함수 def load_lora(pipe, lora_path): pipe.load_lora_weights(lora_path) return pipe # FLUX 모델 초기화 (필요할 때만 로드) fashion_pipe = None def get_fashion_pipe(): global fashion_pipe if fashion_pipe is None: torch.cuda.empty_cache() fashion_pipe = DiffusionPipeline.from_pretrained( BASE_MODEL, torch_dtype=torch.float16, use_auth_token=HF_TOKEN ) fashion_pipe.enable_memory_efficient_attention() fashion_pipe.enable_sequential_cpu_offload() return fashion_pipe # 번역기 초기화 (필요할 때만 로드) translator = None def get_translator(): global translator if translator is None: translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en", device=device if device == "cuda" else -1) return translator # Leffa 모델 관련 함수들 def get_mask_predictor(): global mask_predictor if mask_predictor is None: mask_predictor = AutoMasker( densepose_path="./ckpts/densepose", schp_path="./ckpts/schp", ) return mask_predictor def get_densepose_predictor(): global densepose_predictor if densepose_predictor is None: densepose_predictor = DensePosePredictor( config_path="./ckpts/densepose/densepose_rcnn_R_50_FPN_s1x.yaml", weights_path="./ckpts/densepose/model_final_162be9.pkl", ) return densepose_predictor def get_vt_model(): global vt_model, vt_inference if vt_model is None: torch.cuda.empty_cache() vt_model = load_model_with_optimization( LeffaModel, pretrained_model_name_or_path="./ckpts/stable-diffusion-inpainting", pretrained_model="./ckpts/virtual_tryon.pth" ) vt_inference = LeffaInference(model=vt_model) return vt_model, vt_inference def get_pt_model(): global pt_model, pt_inference if pt_model is None: torch.cuda.empty_cache() pt_model = load_model_with_optimization( LeffaModel, pretrained_model_name_or_path="./ckpts/stable-diffusion-xl-1.0-inpainting-0.1", pretrained_model="./ckpts/pose_transfer.pth" ) pt_inference = LeffaInference(model=pt_model) return pt_model, pt_inference # Leffa 체크포인트 다운로드 snapshot_download(repo_id="franciszzj/Leffa", local_dir="./ckpts") def contains_korean(text): return any(ord('가') <= ord(char) <= ord('힣') for char in text) @spaces.GPU() def generate_fashion(prompt, mode, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)): torch.cuda.empty_cache() if contains_korean(prompt): translator = get_translator() translated = translator(prompt)[0]['translation_text'] actual_prompt = translated else: actual_prompt = prompt # 모드에 따른 LoRA 로딩 및 트리거워드 설정 pipe = get_fashion_pipe() if mode == "Generate Model": pipe = load_lora(pipe, MODEL_LORA_REPO) trigger_word = "fashion photography, professional model" else: pipe = load_lora(pipe, CLOTHES_LORA_REPO) trigger_word = "upper clothing, fashion item" if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator(device="cuda").manual_seed(seed) # 이미지 크기 제한 width = min(width, 1024) height = min(height, 1024) progress(0, "Starting fashion generation...") for i in range(1, steps + 1): if i % (steps // 10) == 0: progress(i / steps * 100, f"Processing step {i} of {steps}...") image = pipe( prompt=f"{actual_prompt} {trigger_word}", num_inference_steps=steps, guidance_scale=cfg_scale, width=width, height=height, generator=generator, joint_attention_kwargs={"scale": lora_scale}, ).images[0] progress(100, "Completed!") return image, seed def leffa_predict(src_image_path, ref_image_path, control_type): torch.cuda.empty_cache() assert control_type in [ "virtual_tryon", "pose_transfer"], "Invalid control type: {}".format(control_type) # 이미지 로드 및 크기 조정 src_image = Image.open(src_image_path) ref_image = Image.open(ref_image_path) src_image = resize_and_center(src_image, 768, 1024) ref_image = resize_and_center(ref_image, 768, 1024) src_image_array = np.array(src_image) ref_image_array = np.array(ref_image) # Mask 생성 if control_type == "virtual_tryon": mask_pred = get_mask_predictor() src_image = src_image.convert("RGB") mask = mask_pred(src_image, "upper")["mask"] elif control_type == "pose_transfer": mask = Image.fromarray(np.ones_like(src_image_array) * 255) # DensePose 예측 dense_pred = get_densepose_predictor() src_image_iuv_array = dense_pred.predict_iuv(src_image_array) src_image_seg_array = dense_pred.predict_seg(src_image_array) src_image_iuv = Image.fromarray(src_image_iuv_array) src_image_seg = Image.fromarray(src_image_seg_array) if control_type == "virtual_tryon": densepose = src_image_seg model, inference = get_vt_model() elif control_type == "pose_transfer": densepose = src_image_iuv model, inference = get_pt_model() # Leffa 변환 및 추론 transform = LeffaTransform() data = { "src_image": [src_image], "ref_image": [ref_image], "mask": [mask], "densepose": [densepose], } data = transform(data) output = inference(data) gen_image = output["generated_image"][0] torch.cuda.empty_cache() return np.array(gen_image) def leffa_predict_vt(src_image_path, ref_image_path): return leffa_predict(src_image_path, ref_image_path, "virtual_tryon") def leffa_predict_pt(src_image_path, ref_image_path): return leffa_predict(src_image_path, ref_image_path, "pose_transfer") # Gradio 인터페이스 with gr.Blocks(theme=gr.themes.Default(primary_hue=gr.themes.colors.pink, secondary_hue=gr.themes.colors.red)) as demo: gr.Markdown("# 🎭 Fashion Studio & Virtual Try-on") with gr.Tabs(): # 패션 생성 탭 with gr.Tab("Fashion Generation"): with gr.Column(): mode = gr.Radio( choices=["Generate Model", "Generate Clothes"], label="Generation Mode", value="Generate Model" ) prompt = gr.TextArea( label="Fashion Description (한글 또는 영어)", placeholder="패션 모델이나 의류를 설명하세요..." ) with gr.Row(): with gr.Column(): result = gr.Image(label="Generated Result") generate_button = gr.Button("Generate Fashion") with gr.Accordion("Advanced Options", open=False): with gr.Group(): with gr.Row(): with gr.Column(): cfg_scale = gr.Slider( label="CFG Scale", minimum=1, maximum=20, step=0.5, value=7.0 ) steps = gr.Slider( label="Steps", minimum=1, maximum=50, # 최대값 감소 step=1, value=30 ) lora_scale = gr.Slider( label="LoRA Scale", minimum=0, maximum=1, step=0.01, value=0.85 ) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=1024, # 최대값 감소 step=64, value=512 ) height = gr.Slider( label="Height", minimum=256, maximum=1024, # 최대값 감소 step=64, value=768 ) with gr.Row(): randomize_seed = gr.Checkbox( True, label="Randomize seed" ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42 ) # 가상 피팅 탭 with gr.Tab("Virtual Try-on"): with gr.Row(): with gr.Column(): gr.Markdown("#### Person Image") vt_src_image = gr.Image( sources=["upload"], type="filepath", label="Person Image", width=512, height=512, ) gr.Examples( inputs=vt_src_image, examples_per_page=5, examples=["./ckpts/examples/person1/01350_00.jpg", "./ckpts/examples/person1/01376_00.jpg", "./ckpts/examples/person1/01416_00.jpg", "./ckpts/examples/person1/05976_00.jpg", "./ckpts/examples/person1/06094_00.jpg"] ) with gr.Column(): gr.Markdown("#### Garment Image") vt_ref_image = gr.Image( sources=["upload"], type="filepath", label="Garment Image", width=512, height=512, ) gr.Examples( inputs=vt_ref_image, examples_per_page=5, examples=["./ckpts/examples/garment/01449_00.jpg", "./ckpts/examples/garment/01486_00.jpg", "./ckpts/examples/garment/01853_00.jpg", "./ckpts/examples/garment/02070_00.jpg", "./ckpts/examples/garment/03553_00.jpg"] ) with gr.Column(): gr.Markdown("#### Generated Image") vt_gen_image = gr.Image( label="Generated Image", width=512, height=512, ) vt_gen_button = gr.Button("Try-on") # 포즈 전송 탭 with gr.Tab("Pose Transfer"): with gr.Row(): with gr.Column(): gr.Markdown("#### Person Image") pt_ref_image = gr.Image( sources=["upload"], type="filepath", label="Person Image", width=512, height=512, ) gr.Examples( inputs=pt_ref_image, examples_per_page=5, examples=["./ckpts/examples/person1/01350_00.jpg", "./ckpts/examples/person1/01376_00.jpg", "./ckpts/examples/person1/01416_00.jpg", "./ckpts/examples/person1/05976_00.jpg", "./ckpts/examples/person1/06094_00.jpg"] ) with gr.Column(): gr.Markdown("#### Target Pose Person Image") pt_src_image = gr.Image( sources=["upload"], type="filepath", label="Target Pose Person Image", width=512, height=512, ) gr.Examples( inputs=pt_src_image, examples_per_page=5, examples=["./ckpts/examples/person2/01850_00.jpg", "./ckpts/examples/person2/01875_00.jpg", "./ckpts/examples/person2/02532_00.jpg", "./ckpts/examples/person2/02902_00.jpg", "./ckpts/examples/person2/05346_00.jpg"] ) with gr.Column(): gr.Markdown("#### Generated Image") pt_gen_image = gr.Image( label="Generated Image", width=512, height=512, ) pose_transfer_gen_button = gr.Button("Generate") # 이벤트 핸들러 generate_button.click( generate_fashion, inputs=[prompt, mode, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale], outputs=[result, seed] ) vt_gen_button.click( fn=leffa_predict_vt, inputs=[vt_src_image, vt_ref_image], outputs=[vt_gen_image] ) pose_transfer_gen_button.click( fn=leffa_predict_pt, inputs=[pt_src_image, pt_ref_image], outputs=[pt_gen_image] ) # 앱 실행 demo.launch(share=True, server_port=7860)